Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Unfold
                                Linear algebra      
Fold
                                Determinant
                                Matrix multiplication
                                Inverse matrix
                                Derivative function
                                Function image
                                Hot issues
Get the inverse matrix:
    Enter an invertible matrix, with each element separated by a comma and each row ending with a semicolon.
    Note that mathematical functions and variables are not supported.
    Current location:Linear algebra >Inverse matrix >History of inverse matrices
    $$\begin{aligned}&\\ \color{black}{Calcu}&\color{black}{late\ the\ inverse\ matrix\ of\ } \ \ \begin{pmatrix} &1\ &1\ &1\ &1\ &1\ \\ &1\ &1\ &1\ &1\ &1\ \\ &1\ &1\ &1\ &1\ &1\ \\ &1\ &1\ &1\ &1\ &1\ \\ &1\ &1\ &1\ &1\ &1\ \end{pmatrix}\color{black}{\ .}\\ \end{aligned}$$
    $$\begin{aligned}&\\ \color{black}{Calcu}&\color{black}{late\ the\ inverse\ matrix\ of\ } \ \ \begin{pmatrix} &17\ &24\ &1\ &8\ &15\ \\ &23\ &5\ &7\ &14\ &16\ \\ &4\ &6\ &13\ &20\ &22\ \\ &10\ &12\ &19\ &21\ &3\ \\ &11\ &18\ &25\ &2\ &9\ \end{pmatrix}\color{black}{\ .}\\ \end{aligned}$$
    $$\begin{aligned}&\\ \color{black}{Calcu}&\color{black}{late\ the\ inverse\ matrix\ of\ } \ \ \begin{pmatrix} &8\ &11\ &14\ &1\ \\ &13\ &2\ &7\ &12\ \\ &3\ &16\ &9\ &6\ \\ &10\ &5\ &4\ &15\ \end{pmatrix}\color{black}{\ .}\\ \end{aligned}$$
    $$\begin{aligned}&\\ \color{black}{Calcu}&\color{black}{late\ the\ inverse\ matrix\ of\ } \ \ \begin{pmatrix} &8\ &1\ &6\ \\ &3\ &5\ &7\ \\ &4\ &9\ &2\ \end{pmatrix}\color{black}{\ .}\\ \end{aligned}$$
    $$\begin{aligned}&\\ \color{black}{Calcu}&\color{black}{late\ the\ inverse\ matrix\ of\ } \ \ \begin{pmatrix} &1\ &43\ &26\ &32\ \\ &74\ &37\ &59\ &86\ \\ &24\ &56\ &85\ &37\ \\ &96\ &45\ &28\ &43\ \end{pmatrix}\color{black}{\ .}\\ \end{aligned}$$

First page << Page24 Page25 Page26 Page27 ... ... Page33 Page34 Page35 >> Last page 共35页
Elementary transformations of matrices:


Definition:Applying the following three transformations to the rows (columns) of a matrix becomes the elementary transformation of the matrix
(1) Swap the positions of two rows (columns) in a matrix;
(2) Using non-zero constants λ Multiply a certain row (column) of a matrix;
(3) Convert a row (column) of a matrix γ Multiply to another row (column) of the matrix.



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。