Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Unfold
                                Linear algebra      
Fold
                                Determinant
                                Matrix multiplication
                                Inverse matrix
                                Derivative function
                                Function image
                                Hot issues
Get the inverse matrix:
    Enter an invertible matrix, with each element separated by a comma and each row ending with a semicolon.
    Note that mathematical functions and variables are not supported.
    Current location:Linear algebra >Inverse matrix >History of inverse matrices
    $$\begin{aligned}&\\ \color{black}{Calcu}&\color{black}{late\ the\ inverse\ matrix\ of\ } \ \ \begin{pmatrix} &5\ &5\ &5\ &5\ &5\ \\ &10\ &10\ &10\ &10\ &10\ \\ &20\ &20\ &20\ &20\ &20\ \\ &40\ &40\ &40\ &40\ &40\ \\ &80\ &80\ &80\ &80\ &160\ \end{pmatrix}\color{black}{\ .}\\ \end{aligned}$$
    $$\begin{aligned}&\\ \color{black}{Calcu}&\color{black}{late\ the\ inverse\ matrix\ of\ } \ \ \begin{pmatrix} &1\ &4\ &3\ \\ &2\ &1\ &3\ \\ &2\ &4\ &1\ \end{pmatrix}\color{black}{\ .}\\ \end{aligned}$$
    $$\begin{aligned}&\\ \color{black}{Calcu}&\color{black}{late\ the\ inverse\ matrix\ of\ } \ \ \begin{pmatrix} &1\ &1\ &1\ &1\ &1\ \\ &1\ &2\ &1\ &1\ &1\ \\ &1\ &1\ &4\ &1\ &1\ \\ &1\ &1\ &1\ &8\ &1\ \\ &1\ &1\ &1\ &1\ &16\ \end{pmatrix}\color{black}{\ .}\\ \end{aligned}$$
    $$\begin{aligned}&\\ \color{black}{Calcu}&\color{black}{late\ the\ inverse\ matrix\ of\ } \ \ \begin{pmatrix} &1\ &1\ &1\ &1\ &1\ \\ &2\ &1\ &1\ &1\ &1\ \\ &4\ &1\ &1\ &1\ &1\ \\ &8\ &1\ &1\ &1\ &1\ \\ &16\ &1\ &1\ &1\ &1\ \end{pmatrix}\color{black}{\ .}\\ \end{aligned}$$
    $$\begin{aligned}&\\ \color{black}{Calcu}&\color{black}{late\ the\ inverse\ matrix\ of\ } \ \ \begin{pmatrix} &2\ &1\ &1\ &1\ &1\ \\ &1\ &2\ &1\ &1\ &1\ \\ &1\ &1\ &2\ &1\ &1\ \\ &1\ &1\ &1\ &2\ &1\ \\ &1\ &1\ &1\ &1\ &2\ \end{pmatrix}\color{black}{\ .}\\ \end{aligned}$$

First page << Page13 Page14 Page15 Page16 ... ... Page30 Page31 Page32 >> Last page 共35页
Elementary transformations of matrices:


Definition:Applying the following three transformations to the rows (columns) of a matrix becomes the elementary transformation of the matrix
(1) Swap the positions of two rows (columns) in a matrix;
(2) Using non-zero constants λ Multiply a certain row (column) of a matrix;
(3) Convert a row (column) of a matrix γ Multiply to another row (column) of the matrix.



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。