在$\triangle ABC$中,$AB=AC$,$BD$平分$\angle ABC$,交$AC$于点$D$,若$BD=BC$,求$\angle A=?$
解:
如图,
设$\angle ABD=α$,则:
\begin{align}
\angle CBD=&α\\
\angle BCD=&2α\\
\angle CDB=&2a
\end{align}
因为$\triangle BCD$的内角和为$180°$,所以
\begin{align}
&\angle BCD+\angle CDB+\angle DBC=180°\\
=>\ &2α+2α+α=180°\\
=>\ &α=36°
\end{align}
又因为$\triangle ABC$的内角和也是$180°$,所以有
\begin{align}
&\angle A+\angle B+\angle C=180°\\
=>\ &\angle A + 2α+2α=180°\\
=>\ &\angle A+4α=180°\\
=>\ &\angle A=180°-4α\\
=>\ &\angle A=180°-4 \times 36°\\
=>\ &\angle A=36°
\end{align}
即,所求的角$A$为:
$\angle A=36°$