Mathematics
         
语言:中文    Language:English
Hot issues:
    This module collects the frequently encountered and difficult problems for reference only.
    Current location:Hot issues > Answer

已知\angle BDC=2\angle CBD\angle ACB=30°\angle ABD=60°,求证:AB=CD

解:
         如图所示:

   
        
\angle BDC的平分线交BCE点,则: \begin{align} \angle BCD=&30°\\ \angle CDE=&50°\\ \angle EDB=&50°\\ \angle DBE=&50°\\ \angle BDA=&80°\\ \angle BAD=&40° \end{align}
\triangle ABD中,由正弦定理得: \frac {AB}{sin80°}=\frac{BD}{sin40°}\ \ \ \ (1)
\triangle BCD中,由正弦定理得: \begin{align} \frac {BD}{sin30°}=&\frac{CD}{sin50°}\\ \ \ \ \ =>BD=&\frac{sin30°}{sin50°}\times CD\ \ \ \ (2) \end{align}
(2)代入(1)消去BD得: \begin{align} \frac {AB}{sin80°}=&\frac {sin30°}{sin40°\times sin50°}\times CD\\ => AB=&\frac{sin80°\times sin30°}{sin40°\times sin50°}\times CD\\ =&\frac{sin80°\times sin30°}{-\frac 12(cos90°-cos10°)}\times CD\\ =&\frac{sin80°\times sin30°}{\frac 12cos10°}\times CD\\ =&CD \end{align}
AB=CD,原命题得证。



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。