Mathematics
         
语言:中文    Language:English
Hot issues:
    This module collects the frequently encountered and difficult problems for reference only.
    Current location:Hot issues > Answer

\triangle ABC中,∠A=∠ABC=∠ADB=70°CD=BE,求∠BDE=?

解:
         如图:




因为 \angle A=\angle ABC=\angle ADB= 70° ,所以, \begin{align} \angle C=& 40°\\ \angle ADB=& 70°\\ \angle ABD=& 40°\\ \angle DBE=& 30° \end{align} \angle BDE=β\angle CED=α,则 \angle α=\angle β+30°\ \ \ \ (1) 则在\triangle CDE中,由正弦定理得: \frac {DE}{sin40°}=\frac{CD}{sinα}\ \ \ \ (2) \triangle BDE中,由正弦定理得: \frac {BE}{sinβ}=\frac{DE}{sin30°}\ \ \ \ (3) (3)得: DE=\frac{BE \times sin30°}{sinβ}\ \ \ \ (4) (4)代入(2)得: \frac{BE \times sin30°}{sin40° \times sinβ}=\frac{CD}{sinα}\ \ \ \ (5) 因为CD=BE,所以等式可以化简为: sin30° \times sinα=sin40°\times sinβ\ \ \ \ (6) 再把(1)代入(6)得: sin30°\times sin(β+30°)=sin40°\times sinβ 解这个三角函数方程得: β=50°
         即:\angle BDE=50°



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。