Mathematics
         
语言:中文    Language:English
On line solution of multivariate equations:
    First set the elements of the equation (i.e. the number of unknowns), then click the "Next" button to enter the coefficients of each element of the equation set, and click the "Next" button to obtain the solution of the equation set.
    Note that the coefficients of each element of the equation system can only be numbers, not algebraic expressions (including mathematical functions).
    Current location:Equations > Multivariate equations > Answer
detailed information:
The input equation set is:
 510x + 510z = 6    (1)
 1000y + 510z = 12    (2)
 x + y -1z = 0    (3)
Question solving process:

Divide the two sides of equation (1) by 510, the equation can be obtained:
         x + z = 
1
85
    (4)
, then subtract both sides of equation (4) from both sides of equation (3), the equations are reduced to:
 510x + 510z = 6    (1)
 1000y + 510z = 12    (2)
 y -2z = 
1
85
    (3)

Divide the two sides of equation (2) by 1000, the equation can be obtained:
         y + 
51
100
z = 
3
250
    (5)
, then subtract both sides of equation (5) from both sides of equation (3), the equations are reduced to:
 510x + 510z = 6    (1)
 1000y + 510z = 12    (2)
251
100
z = 
101
4250
    (3)

Multiply both sides of equation (3) by 51000
Divide both sides of equation (3) by 251, get the equation:
        
128010
251
z = 
1212
251
    (6)
, then add the two sides of equation (6) to both sides of equation (2), get the equation:
 510x + 510z = 6    (1)
 1000y = 
1800
251
    (2)
251
100
z = 
101
4250
    (3)

Multiply both sides of equation (3) by 51000
Divide both sides of equation (3) by 251, get the equation:
        
128010
251
z = 
1212
251
    (7)
, then add the two sides of equation (7) to both sides of equation (1), get the equation:
 510x = 
294
251
    (1)
 1000y = 
1800
251
    (2)
251
100
z = 
101
4250
    (3)

The coefficient of the unknown number is reduced to 1, and the equations are reduced to:
 x = 
49
21335
    (1)
 y = 
9
1255
    (2)
 z = 
202
21335
    (3)


Therefore, the solution of the equation set is:
x = 
49
21335
y = 
9
1255
z = 
202
21335


Convert the solution of the equation set to decimals:
x = 0.002297
y = 0.007171
z = 0.009468

解方程组的详细方法请参阅:《多元一次方程组的解法》







  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。