Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Fold
                                Inequality
                                Mathematics
                                Fractions
                                Statistics
                                Prime factor
                                Fraction and Decimal Interactions
                                Lenders ToolBox
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Mathematical calculation:
    Enter the mathematical formula directly and click the "Next" button to get the calculation answer.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Mathematical Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 arithmetic calculations

[1/1 Formula]
    Work: Calculate the value of equation 1/12×200×1300^3+200×1300×(1300/2-458)^2+1/12×(1600-200)×120^3+(1600-200)×120×(458-120/2)^2+(6.349-1)×4241×(1192-458)^2 .
    Question type: Mathematical calculation
    Solution:
          1/12×200×1300^3+200×1300×(1300/2-458)^2+1/12×(1600-200)×120^3+(1600-200)×120×(458-120/2)^2+(6.349-1)×4241×(1192-458)^2
        =1/12×200×1300^3+200×1300×192^2+1/12×(1600-200)×120^3+(1600-200)×120×(458-120/2)^2+(6.349-1)×4241×(1192-458)^2
        =1/12×200×1300^3+200×1300×192^2+1/12×1400×120^3+(1600-200)×120×(458-120/2)^2+(6.349-1)×4241×(1192-458)^2
        =1/12×200×1300^3+200×1300×192^2+1/12×1400×120^3+1400×120×(458-120/2)^2+(6.349-1)×4241×(1192-458)^2
        =1/12×200×1300^3+200×1300×192^2+1/12×1400×120^3+1400×120×398^2+(6.349-1)×4241×(1192-458)^2
        =1/12×200×1300^3+200×1300×192^2+1/12×1400×120^3+1400×120×398^2+5.349×4241×(1192-458)^2
        =1/12×200×1300^3+200×1300×192^2+1/12×1400×120^3+1400×120×398^2+5.349×4241×734^2
        =1/12×200×2197000000+200×1300×192^2+1/12×1400×120^3+1400×120×398^2+5.349×4241×734^2
        =1/12×200×2197000000+200×1300×36864+1/12×1400×120^3+1400×120×398^2+5.349×4241×734^2
        =1/12×200×2197000000+200×1300×36864+1/12×1400×1728000+1400×120×398^2+5.349×4241×734^2
        =1/12×200×2197000000+200×1300×36864+1/12×1400×1728000+1400×120×158404+5.349×4241×734^2
        =1/12×200×2197000000+200×1300×36864+1/12×1400×1728000+1400×120×158404+5.349×4241×538756
        =0.083333×200×2197000000+200×1300×36864+1/12×1400×1728000+1400×120×158404+5.349×4241×538756
        =16.6666×2197000000+200×1300×36864+1/12×1400×1728000+1400×120×158404+5.349×4241×538756
        =36616520200+200×1300×36864+1/12×1400×1728000+1400×120×158404+5.349×4241×538756
        =36616520200+260000×36864+1/12×1400×1728000+1400×120×158404+5.349×4241×538756
        =36616520200+9584640000+1/12×1400×1728000+1400×120×158404+5.349×4241×538756
        =36616520200+9584640000+0.083333×1400×1728000+1400×120×158404+5.349×4241×538756
        =36616520200+9584640000+116.6662×1728000+1400×120×158404+5.349×4241×538756
        =36616520200+9584640000+201599193.6+1400×120×158404+5.349×4241×538756
        =36616520200+9584640000+201599193.6+168000×158404+5.349×4241×538756
        =36616520200+9584640000+201599193.6+26611872000+5.349×4241×538756
        =36616520200+9584640000+201599193.6+26611872000+22685.109×538756
        =36616520200+9584640000+201599193.6+26611872000+12221738584.403999
        =46201160200+201599193.6+26611872000+12221738584.403999
        =46402759393.599998+26611872000+12221738584.403999
        =73014631393.600006+12221738584.403999
        =85236369978.003998

    Answer:1/12×200×1300^3+200×1300×(1300/2-458)^2+1/12×(1600-200)×120^3+(1600-200)×120×(458-120/2)^2+(6.349-1)×4241×(1192-458)^2=85236369978.003998


Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。