There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ {sh(x)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sh^{4}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sh^{4}(x)\right)}{dx}\\=&4sh^{3}(x)ch(x)\\=&4sh^{3}(x)ch(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4sh^{3}(x)ch(x)\right)}{dx}\\=&4*3sh^{2}(x)ch(x)ch(x) + 4sh^{3}(x)sh(x)\\=&12sh^{2}(x)ch^{2}(x) + 4sh^{4}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 12sh^{2}(x)ch^{2}(x) + 4sh^{4}(x)\right)}{dx}\\=&12*2sh(x)ch(x)ch^{2}(x) + 12sh^{2}(x)*2ch(x)sh(x) + 4*4sh^{3}(x)ch(x)\\=&24sh(x)ch^{3}(x) + 40sh^{3}(x)ch(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 24sh(x)ch^{3}(x) + 40sh^{3}(x)ch(x)\right)}{dx}\\=&24ch(x)ch^{3}(x) + 24sh(x)*3ch^{2}(x)sh(x) + 40*3sh^{2}(x)ch(x)ch(x) + 40sh^{3}(x)sh(x)\\=&24ch^{4}(x) + 192sh^{2}(x)ch^{2}(x) + 40sh^{4}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ {ch(x)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ch^{4}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ch^{4}(x)\right)}{dx}\\=&4ch^{3}(x)sh(x)\\=&4sh(x)ch^{3}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4sh(x)ch^{3}(x)\right)}{dx}\\=&4ch(x)ch^{3}(x) + 4sh(x)*3ch^{2}(x)sh(x)\\=&4ch^{4}(x) + 12sh^{2}(x)ch^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 4ch^{4}(x) + 12sh^{2}(x)ch^{2}(x)\right)}{dx}\\=&4*4ch^{3}(x)sh(x) + 12*2sh(x)ch(x)ch^{2}(x) + 12sh^{2}(x)*2ch(x)sh(x)\\=&40sh(x)ch^{3}(x) + 24sh^{3}(x)ch(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 40sh(x)ch^{3}(x) + 24sh^{3}(x)ch(x)\right)}{dx}\\=&40ch(x)ch^{3}(x) + 40sh(x)*3ch^{2}(x)sh(x) + 24*3sh^{2}(x)ch(x)ch(x) + 24sh^{3}(x)sh(x)\\=&40ch^{4}(x) + 192sh^{2}(x)ch^{2}(x) + 24sh^{4}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!