Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1+x = (1+0.3*x)*(1+0.4*x)*(1+0.1*x)*(1+0.05*x)*(1+0.5*x)*(1+0.5*x) .
    Question type: Equation
    Solution:Original question:
     1 + x = (1 +
3
10
x )(1 +
2
5
x )(1 +
1
10
x )(1 +
1
20
x )(1 +
1
2
x )(1 +
1
2
x )
    Remove the bracket on the right of the equation:
     Right side of the equation = 1(1 +
2
5
x )(1 +
1
10
x )(1 +
1
20
x )(1 +
1
2
x )(1 +
1
2
x ) +
3
10
x (1 +
2
5
x )(1 +
1
10
x )(1 +
1
20
x )(1 +
1
2
x )
                                               = 1 × 1(1 +
1
10
x )(1 +
1
20
x )(1 +
1
2
x )(1 +
1
2
x ) + 1 ×
2
5
x (1 +
1
10
x )(1 +
1
20
x )(1 +
1
2
x )
                                               = 1(1 +
1
10
x )(1 +
1
20
x )(1 +
1
2
x )(1 +
1
2
x ) +
2
5
x (1 +
1
10
x )(1 +
1
20
x )(1 +
1
2
x )(1 +
1
2
x ) +
3
10
                                               = 1 × 1(1 +
1
20
x )(1 +
1
2
x )(1 +
1
2
x ) + 1 ×
1
10
x (1 +
1
20
x )(1 +
1
2
x )(1 +
1
2
x ) +
2
5
                                               = 1(1 +
1
20
x )(1 +
1
2
x )(1 +
1
2
x ) +
1
10
x (1 +
1
20
x )(1 +
1
2
x )(1 +
1
2
x ) +
2
5
x (1 +
1
10
x )
                                               = 1 × 1(1 +
1
2
x )(1 +
1
2
x ) + 1 ×
1
20
x (1 +
1
2
x )(1 +
1
2
x ) +
1
10
x (1 +
1
20
x )
                                               = 1(1 +
1
2
x )(1 +
1
2
x ) +
1
20
x (1 +
1
2
x )(1 +
1
2
x ) +
1
10
x (1 +
1
20
x )(1 +
1
2
x )(1 +
1
2
x )
                                               = 1 × 1(1 +
1
2
x ) + 1 ×
1
2
x (1 +
1
2
x ) +
1
20
x (1 +
1
2
x )(1 +
1
2
x ) +
1
10
                                               = 1(1 +
1
2
x ) +
1
2
x (1 +
1
2
x ) +
1
20
x (1 +
1
2
x )(1 +
1
2
x ) +
1
10
x (1 +
1
20
x )
                                               = 1 × 1 + 1 ×
1
2
x +
1
2
x (1 +
1
2
x ) +
1
20
x (1 +
1
2
x )(1 +
1
2
x )
                                               = 1 +
1
2
x +
1
2
x (1 +
1
2
x ) +
1
20
x (1 +
1
2
x )(1 +
1
2
x ) +
1
10
x
                                               = 1 +
1
2
x +
1
2
x × 1 +
1
2
x ×
1
2
x +
1
20
x
                                               = 1 +
1
2
x +
1
2
x +
1
4
x x +
1
20
x (1 +
1
2
x )(1 +
1
2
x )
                                               = 1 + 1 x +
1
4
x x +
1
20
x (1 +
1
2
x )(1 +
1
2
x ) +
1
10
x
                                               = 1 + 1 x +
1
4
x x +
1
20
x × 1(1 +
1
2
x ) +
1
20
x
                                               = 1 + 1 x +
1
4
x x +
1
20
x (1 +
1
2
x ) +
1
40
x x
                                               = 1 + 1 x +
1
4
x x +
1
20
x × 1 +
1
20
x ×
1
2
                                               = 1 + 1 x +
1
4
x x +
1
20
x +
1
40
x x +
1
40
                                               = 1 +
21
20
x +
1
4
x x +
1
40
x x +
1
40
x x
                                               = 1 +
21
20
x +
1
4
x x +
1
40
x x +
1
40
x x
                                               = 1 +
21
20
x +
1
4
x x +
1
40
x x +
1
40
x x
                                               = 1 +
21
20
x +
1
4
x x +
1
40
x x +
1
40
x x
                                               = 1 +
21
20
x +
1
4
x x +
1
40
x x +
1
40
x x
                                               = 1 +
21
20
x +
1
4
x x +
1
40
x x +
1
40
x x
                                               = 1 +
21
20
x +
1
4
x x +
1
40
x x +
1
40
x x

    After the equation is converted into a general formula, there is a common factor:
    ( x + 0.862803 )( x - 0 )
    From
        x + 0.862803 = 0
        x - 0 = 0

    it is concluded that::
        x1≈-0.862803 , keep 6 decimal places
        x2=0

    Solutions that cannot be obtained by factorization:
        x3≈-19.860687 , keep 6 decimal places
        x4≈-11.301271 , keep 6 decimal places
    
    There are 4 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。