Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 2/(2-x)+3/(1.5-x)+1.2/(1.2-x)+6/(1-x) = 100 .
    Question type: Equation
    Solution:Original question:
     2 ÷ (2 x ) + 3 ÷ (
3
2
x ) +
6
5
÷ (
6
5
x ) + 6 ÷ (1 x ) = 100
     Multiply both sides of the equation by:(2 x )
     2 + 3 ÷ (
3
2
x ) × (2 x ) +
6
5
÷ (
6
5
x ) × (2 x ) + 6 ÷ (1 x ) × (2 x ) = 100(2 x )
    Remove a bracket on the left of the equation::
     2 + 3 ÷ (
3
2
x ) × 23 ÷ (
3
2
x ) × x +
6
5
÷ (
6
5
x ) × (2 x ) + 6 ÷ (1 x ) = 100(2 x )
    Remove a bracket on the right of the equation::
     2 + 3 ÷ (
3
2
x ) × 23 ÷ (
3
2
x ) × x +
6
5
÷ (
6
5
x ) × (2 x ) + 6 ÷ (1 x ) = 100 × 2100 x
    The equation is reduced to :
     2 + 6 ÷ (
3
2
x )3 ÷ (
3
2
x ) × x +
6
5
÷ (
6
5
x ) × (2 x ) + 6 ÷ (1 x ) × (2 x ) = 200100 x
     Multiply both sides of the equation by:(
3
2
x )
     2(
3
2
x ) + 63 x +
6
5
÷ (
6
5
x ) × (2 x )(
3
2
x ) + 6 ÷ (1 x ) × (2 x ) = 200(
3
2
x )100 x (
3
2
x )
    Remove a bracket on the left of the equation:
     2 ×
3
2
2 x + 63 x +
6
5
÷ (
6
5
x ) × (2 x )(
3
2
x ) + 6 = 200(
3
2
x )100 x (
3
2
x )
    Remove a bracket on the right of the equation::
     2 ×
3
2
2 x + 63 x +
6
5
÷ (
6
5
x ) × (2 x )(
3
2
x ) + 6 = 200 ×
3
2
200 x 100 x (
3
2
x )
    The equation is reduced to :
     32 x + 63 x +
6
5
÷ (
6
5
x ) × (2 x )(
3
2
x ) + 6 ÷ (1 x ) = 300200 x 100 x (
3
2
x )
    The equation is reduced to :
     95 x +
6
5
÷ (
6
5
x ) × (2 x )(
3
2
x ) + 6 ÷ (1 x ) × (2 x )(
3
2
x ) = 300200 x 100 x (
3
2
x )
     Multiply both sides of the equation by:(
6
5
x )
     9(
6
5
x )5 x (
6
5
x ) +
6
5
(2 x )(
3
2
x ) + 6 ÷ (1 x ) × (2 x )(
3
2
x ) = 300(
6
5
x )200 x (
6
5
x )100 x (
3
2
x )(
6
5
x )
    Remove a bracket on the left of the equation:
     9 ×
6
5
9 x 5 x (
6
5
x ) +
6
5
(2 x )(
3
2
x ) + 6 ÷ (1 x ) = 300(
6
5
x )200 x (
6
5
x )100 x (
3
2
x )(
6
5
x )
    Remove a bracket on the right of the equation::
     9 ×
6
5
9 x 5 x (
6
5
x ) +
6
5
(2 x )(
3
2
x ) + 6 ÷ (1 x ) = 300 ×
6
5
300 x 200 x (
6
5
x )100 x (
3
2
x )(
6
5
x )
    The equation is reduced to :
     
54
5
9 x 5 x (
6
5
x ) +
6
5
(2 x )(
3
2
x ) + 6 ÷ (1 x ) × (2 x ) = 360300 x 200 x (
6
5
x )100 x (
3
2
x )(
6
5
x )
     Multiply both sides of the equation by:(1 x )
     
54
5
(1 x )9 x (1 x )5 x (
6
5
x )(1 x ) +
6
5
(2 x )(
3
2
x ) = 360(1 x )300 x (1 x )200 x (
6
5
x )(1 x )100 x (
3
2
x )
    Remove a bracket on the left of the equation:
     
54
5
× 1
54
5
x 9 x (1 x )5 x (
6
5
x )(1 x ) +
6
5
= 360(1 x )300 x (1 x )200 x (
6
5
x )(1 x )100 x (
3
2
x )
    Remove a bracket on the right of the equation::
     
54
5
× 1
54
5
x 9 x (1 x )5 x (
6
5
x )(1 x ) +
6
5
= 360 × 1360 x 300 x (1 x )200 x (
6
5
x )(1 x )100
    The equation is reduced to :
     
54
5
54
5
x 9 x (1 x )5 x (
6
5
x )(1 x ) +
6
5
(2 x ) = 360360 x 300 x (1 x )200 x (
6
5
x )(1 x )100 x
    Remove a bracket on the left of the equation:
     
54
5
54
5
x 9 x × 1 + 9 x x 5 x (
6
5
x ) = 360360 x 300 x (1 x )200 x (
6
5
x )(1 x )100 x
    Remove a bracket on the right of the equation::
     
54
5
54
5
x 9 x × 1 + 9 x x 5 x (
6
5
x ) = 360360 x 300 x × 1 + 300 x x 200 x (
6
5
x )
    The equation is reduced to :
     
54
5
54
5
x 9 x + 9 x x 5 x (
6
5
x )(1 x ) = 360360 x 300 x + 300 x x 200 x (
6
5
x )(1 x )
    The equation is reduced to :
     
54
5
99
5
x + 9 x x 5 x (
6
5
x )(1 x ) +
6
5
(2 x ) = 360660 x + 300 x x 200 x (
6
5
x )(1 x )100 x

    
        x≈0.932100 , keep 6 decimal places
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。