Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation X+(X/1.01*0.01)+(((X+(X/1.01*0.01))-(X+(X/1.01*0.01)*0.2)*0.2) ) = 6000 .
    Question type: Equation
    Solution:Original question:
      X + ( X ÷
101
100
×
1
100
) + ((( X + ( X ÷
101
100
×
1
100
))( X + ( X ÷
101
100
×
1
100
) ×
1
5
) ×
1
5
)) = 6000
    Remove the bracket on the left of the equation:
     Left side of the equation = X + X ÷
101
100
×
1
100
+ ((( X + ( X ÷
101
100
×
1
100
))( X + ( X ÷
101
100
×
1
100
) ×
1
5
) ×
1
5
))
                                             = X + X ×
1
101
+ ((( X + ( X ÷
101
100
×
1
100
))( X + ( X ÷
101
100
×
1
100
) ×
1
5
) ×
1
5
))
                                             =
102
101
X + ((( X + ( X ÷
101
100
×
1
100
))( X + ( X ÷
101
100
×
1
100
) ×
1
5
) ×
1
5
))
                                             =
102
101
X + (( X + ( X ÷
101
100
×
1
100
))( X + ( X ÷
101
100
×
1
100
) ×
1
5
) ×
1
5
)
                                             =
102
101
X + ( X + ( X ÷
101
100
×
1
100
))( X + ( X ÷
101
100
×
1
100
) ×
1
5
) ×
1
5
                                             =
102
101
X + X + ( X ÷
101
100
×
1
100
)( X + ( X ÷
101
100
×
1
100
) ×
1
5
) ×
1
5
                                             =
203
101
X + ( X ÷
101
100
×
1
100
)( X + ( X ÷
101
100
×
1
100
) ×
1
5
) ×
1
5
                                             =
203
101
X + X ÷
101
100
×
1
100
( X + ( X ÷
101
100
×
1
100
) ×
1
5
) ×
1
5
                                             =
203
101
X + X ×
1
101
( X + ( X ÷
101
100
×
1
100
) ×
1
5
) ×
1
5
                                             =
204
101
X ( X + ( X ÷
101
100
×
1
100
) ×
1
5
) ×
1
5
                                             =
204
101
X X ×
1
5
( X ÷
101
100
×
1
100
) ×
1
5
×
1
5
                                             =
204
101
X X ×
1
5
( X ÷
101
100
×
1
100
) ×
1
25
                                             =
919
505
X ( X ÷
101
100
×
1
100
) ×
1
25
                                             =
919
505
X X ÷
101
100
×
1
100
×
1
25
                                             =
919
505
X X ×
1
2525
                                             =
4594
2525
X
    The equation is transformed into :
     
4594
2525
X = 6000

    The coefficient of the unknown number is reduced to 1 :
      X = 6000 ÷
4594
2525
        = 6000 ×
2525
4594
        = 3000 ×
2525
2297

    We obtained :
      X =
7575000
2297
    This is the solution of the equation.

    Convert the result to decimal form :
      X = 3297.779713



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。