Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation ((13.5-X)*200+500)(X-2.5) = 9100 .
    Question type: Equation
    Solution:Original question:
     ((
27
2
X ) × 200 + 500)( X
5
2
) = 9100
    Remove the bracket on the left of the equation:
     Left side of the equation = (
27
2
X ) × 200( X
5
2
) + 500( X
5
2
)
                                             =
27
2
× 200( X
5
2
) X × 200( X
5
2
) + 500( X
5
2
)
                                             = 2700( X
5
2
) X × 200( X
5
2
) + 500( X
5
2
)
                                             = 2700 X 2700 ×
5
2
X × 200( X
5
2
) + 500( X
5
2
)
                                             = 2700 X 6750 X × 200( X
5
2
) + 500( X
5
2
)
                                             = 2700 X 6750 X × 200 X + X × 200 ×
5
2
+ 500( X
5
2
)
                                             = 2700 X 6750 X × 200 X + X × 500 + 500( X
5
2
)
                                             = 3200 X 6750 X × 200 X + 500( X
5
2
)
                                             = 3200 X 6750 X × 200 X + 500 X 500 ×
5
2
                                             = 3200 X 6750 X × 200 X + 500 X 1250
                                             = 3700 X 8000 X × 200 X
    The equation is transformed into :
     3700 X 8000 X × 200 X = 9100

    After the equation is converted into a general formula, it is converted into:
    ( X - 9 )( 2X - 19 )=0
    From
        X - 9 = 0
        2X - 19 = 0

    it is concluded that::
        X1=9
        X2=
19
2
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。