Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (2y-5)/2022-3 = (2y-5)*2022+(2022*2022-4) .
    Question type: Equation
    Solution:Original question:
     (2 y 5) ÷ 20223 = (2 y 5) × 2022 + (2022 × 20224)
    Remove the bracket on the left of the equation:
     Left side of the equation = 2 y ×
1
2022
5 ×
1
2022
3
                                             =
1
1011
y
5
2022
3
                                             =
1
1011
y
6071
2022
    The equation is transformed into :
     
1
1011
y
6071
2022
= (2 y 5) × 2022 + (2022 × 20224)
    Remove the bracket on the right of the equation:
     Right side of the equation = 2 y × 20225 × 2022 + (2022 × 20224)
                                               = 4044 y 10110 + (2022 × 20224)
                                               = 4044 y 10110 + 2022 × 20224
                                               = 4044 y 10110 + 40884844
                                               = 4044 y + 4078370
    The equation is transformed into :
     
1
1011
y
6071
2022
= 4044 y + 4078370

    Transposition :
     
1
1011
y 4044 y = 4078370 +
6071
2022

    Combine the items on the left of the equation:
      -
4088483
1011
y = 4078370 +
6071
2022

    Combine the items on the right of the equation:
      -
4088483
1011
y =
8246470211
2022

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
      -
8246470211
2022
=
4088483
1011
y

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
4088483
1011
y = -
8246470211
2022

    The coefficient of the unknown number is reduced to 1 :
      y = -
8246470211
2022
÷
4088483
1011
        = -
8246470211
2022
×
1011
4088483
        = -
2017
674
× 337

    We obtained :
      y = -
679729
674
    This is the solution of the equation.

    By reducing fraction, we can get:
      y = -
2017
2

    Convert the result to decimal form :
      y = - 1008.5



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。