Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x+1/2(x-1)+1/4(x-2) = 1/8(x-3)+1/16(x-4)+1/32(x-5) .
    Question type: Equation
    Solution:Original question:
      x + 1 ÷ 2 × ( x 1) + 1 ÷ 4 × ( x 2) = 1 ÷ 8 × ( x 3) + 1 ÷ 16 × ( x 4) + 1 ÷ 32 × ( x 5)
     Left side of the equation = x +
1
2
( x 1) +
1
4
( x 2)
    The equation is transformed into :
      x +
1
2
( x 1) +
1
4
( x 2) = 1 ÷ 8 × ( x 3) + 1 ÷ 16 × ( x 4) + 1 ÷ 32 × ( x 5)
    Remove the bracket on the left of the equation:
     Left side of the equation = x +
1
2
x
1
2
× 1 +
1
4
( x 2)
                                             = x +
1
2
x
1
2
+
1
4
( x 2)
                                             =
3
2
x
1
2
+
1
4
( x 2)
                                             =
3
2
x
1
2
+
1
4
x
1
4
× 2
                                             =
3
2
x
1
2
+
1
4
x
1
2
                                             =
7
4
x 1
    The equation is transformed into :
     
7
4
x 1 = 1 ÷ 8 × ( x 3) + 1 ÷ 16 × ( x 4) + 1 ÷ 32 × ( x 5)
     Right side of the equation =
1
8
( x 3) +
1
16
( x 4) +
1
32
( x 5)
    The equation is transformed into :
     
7
4
x 1 =
1
8
( x 3) +
1
16
( x 4) +
1
32
( x 5)
    Remove the bracket on the right of the equation:
     Right side of the equation =
1
8
x
1
8
× 3 +
1
16
( x 4) +
1
32
( x 5)
                                               =
1
8
x
3
8
+
1
16
( x 4) +
1
32
( x 5)
                                               =
1
8
x
3
8
+
1
16
x
1
16
× 4 +
1
32
( x 5)
                                               =
1
8
x
3
8
+
1
16
x
1
4
+
1
32
( x 5)
                                               =
3
16
x
5
8
+
1
32
( x 5)
                                               =
3
16
x
5
8
+
1
32
x
1
32
× 5
                                               =
3
16
x
5
8
+
1
32
x
5
32
                                               =
7
32
x
25
32
    The equation is transformed into :
     
7
4
x 1 =
7
32
x
25
32

    Transposition :
     
7
4
x
7
32
x = -
25
32
+ 1

    Combine the items on the left of the equation:
     
49
32
x = -
25
32
+ 1

    Combine the items on the right of the equation:
     
49
32
x =
7
32

    The coefficient of the unknown number is reduced to 1 :
      x =
7
32
÷
49
32
        =
7
32
×
32
49
        = 1 ×
1
7

    We obtained :
      x =
1
7
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.142857



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。