Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (2*k+1)*(2*k+1)-2*(4*k-3)*(4*k-3) = 31 .
    Question type: Equation
    Solution:Original question:
     (2 k + 1)(2 k + 1)2(4 k 3)(4 k 3) = 31
    Remove the bracket on the left of the equation:
     Left side of the equation = 2 k (2 k + 1) + 1(2 k + 1)2(4 k 3)(4 k 3)
                                             = 2 k × 2 k + 2 k × 1 + 1(2 k + 1)2(4 k 3)(4 k 3)
                                             = 4 k k + 2 k + 1(2 k + 1)2(4 k 3)(4 k 3)
                                             = 4 k k + 2 k + 1 × 2 k + 1 × 12(4 k 3)
                                             = 4 k k + 2 k + 2 k + 12(4 k 3)(4 k 3)
                                             = 4 k k + 4 k + 12(4 k 3)(4 k 3)
                                             = 4 k k + 4 k + 12 × 4 k (4 k 3) + 2 × 3
                                             = 4 k k + 4 k + 18 k (4 k 3) + 6(4 k 3)
                                             = 4 k k + 4 k + 18 k × 4 k + 8 k
                                             = 4 k k + 4 k + 132 k k + 24 k + 6
                                             = 4 k k + 28 k + 132 k k + 6(4 k 3)
                                             = 4 k k + 28 k + 132 k k + 6 × 4 k
                                             = 4 k k + 28 k + 132 k k + 24 k 18
                                             = 4 k k + 52 k 1732 k k
    The equation is transformed into :
     4 k k + 52 k 1732 k k = 31
    This equation has no real solution!


Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。