Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.507/((40+8.5X)/(90+15.3X)) = 0.492/((50+6.8X)/(90+15.3X)) .
    Question type: Equation
    Solution:Original question:
     
507
1000
÷ ((40 +
17
2
X ) ÷ (90 +
153
10
X )) =
123
250
÷ ((50 +
34
5
X ) ÷ (90 +
153
10
X ))
     Multiply both sides of the equation by:((40 +
17
2
X ) ÷ (90 +
153
10
X )) ,  ((50 +
34
5
X ) ÷ (90 +
153
10
X ))
     
507
1000
((50 +
34
5
X ) ÷ (90 +
153
10
X )) =
123
250
((40 +
17
2
X ) ÷ (90 +
153
10
X ))
    Remove a bracket on the left of the equation::
     
507
1000
(50 +
34
5
X ) ÷ (90 +
153
10
X ) =
123
250
((40 +
17
2
X ) ÷ (90 +
153
10
X ))
    Remove a bracket on the right of the equation::
     
507
1000
(50 +
34
5
X ) ÷ (90 +
153
10
X ) =
123
250
(40 +
17
2
X ) ÷ (90 +
153
10
X )
     Multiply both sides of the equation by:(90 +
153
10
X )
     
507
1000
(50 +
34
5
X ) =
123
250
(40 +
17
2
X )
    Remove a bracket on the left of the equation:
     
507
1000
× 50 +
507
1000
×
34
5
X =
123
250
(40 +
17
2
X )
    Remove a bracket on the right of the equation::
     
507
1000
× 50 +
507
1000
×
34
5
X =
123
250
× 40 +
123
250
×
17
2
X
    The equation is reduced to :
     
507
20
+
8619
2500
X =
492
25
+
2091
500
X

    Transposition :
     
8619
2500
X
2091
500
X =
492
25
507
20

    Combine the items on the left of the equation:
      -
459
625
X =
492
25
507
20

    Combine the items on the right of the equation:
      -
459
625
X = -
567
100

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
567
100
=
459
625
X

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
459
625
X =
567
100

    The coefficient of the unknown number is reduced to 1 :
      X =
567
100
÷
459
625
        =
567
100
×
625
459
        =
21
4
×
25
17

    We obtained :
      X =
525
68
    This is the solution of the equation.

    Convert the result to decimal form :
      X = 7.720588



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。