4 | x | × | 2 | − | 16 | x | + | 16 | = | ( | 4 | x | × | 2 | + | 16 | − | 16 | x | × | 2 | ) | ÷ | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | + | 4 | x | × | 2 | + | ( | 16 | x | − | 8 | x | × | 2 | ) | ÷ | ( | 2 | x | + | 1 | ) |
Multiply both sides of the equation by: | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) |
4 | x | × | 2 | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | − | 16 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | + | 16 | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | = | ( | 4 | x | × | 2 | + | 16 | − | 16 | x | × | 2 | ) | + | 4 | x | × | 2 | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | + | ( | 16 | x | − | 8 | x | × | 2 | ) | ÷ | ( | 2 | x | + | 1 | ) | × | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) |
4 | x | × | 2 | × | 4 | x | × | 2 | + | 4 | x | × | 2 | × | 1 | + | 4 | x | = | ( | 4 | x | × | 2 | + | 16 | − | 16 | x | × | 2 | ) | + | 4 | x | × | 2 | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | + | ( | 16 | x | − | 8 | x | × | 2 | ) | ÷ | ( | 2 | x | + | 1 | ) | × | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) |
4 | x | × | 2 | × | 4 | x | × | 2 | + | 4 | x | × | 2 | × | 1 | + | 4 | x | = | 4 | x | × | 2 | + | 16 | − | 16 | x | × | 2 | + | 4 | x | × | 2 | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | + | ( | 16 | x | − | 8 | x | × | 2 | ) |
64 | x | x | + | 8 | x | + | 32 | x | x | − | 16 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | + | 16 | = | 8 | x | + | 16 | − | 32 | x | + | 8 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | + | ( | 16 | x | − | 8 | x | × | 2 | ) | ÷ | ( | 2 | x | + | 1 | ) | × | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) |
64 | x | x | + | 8 | x | + | 32 | x | x | − | 16 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | + | 16 | = | - | 24 | x | + | 16 | + | 8 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | + | ( | 16 | x | − | 8 | x | × | 2 | ) | ÷ | ( | 2 | x | + | 1 | ) | × | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) |
Multiply both sides of the equation by: | ( | 2 | x | + | 1 | ) |
64 | x | x | ( | 2 | x | + | 1 | ) | + | 8 | x | ( | 2 | x | + | 1 | ) | + | 32 | x | x | ( | 2 | x | + | 1 | ) | − | 16 | = | - | 24 | x | ( | 2 | x | + | 1 | ) | + | 16 | ( | 2 | x | + | 1 | ) | + | 8 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | ( | 2 | x | + | 1 | ) | + | ( | 16 | x | − | 8 | x | × | 2 | ) | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) |
64 | x | x | × | 2 | x | + | 64 | x | x | × | 1 | + | 8 | x | ( | 2 | x | + | 1 | ) | = | - | 24 | x | ( | 2 | x | + | 1 | ) | + | 16 | ( | 2 | x | + | 1 | ) | + | 8 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | ( | 2 | x | + | 1 | ) | + | ( | 16 | x | − | 8 | x | × | 2 | ) | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) |
64 | x | x | × | 2 | x | + | 64 | x | x | × | 1 | + | 8 | x | ( | 2 | x | + | 1 | ) | = | - | 24 | x | × | 2 | x | − | 24 | x | × | 1 | + | 16 | ( | 2 | x | + | 1 | ) | + | 8 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) |
128 | x | x | x | + | 64 | x | x | + | 8 | x | ( | 2 | x | + | 1 | ) | + | 32 | x | = | - | 48 | x | x | − | 24 | x | + | 16 | ( | 2 | x | + | 1 | ) | + | 8 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | ( | 2 | x | + | 1 | ) | + | ( | 16 | x | − | 8 | x | × | 2 | ) |
128 | x | x | x | + | 64 | x | x | + | 8 | x | × | 2 | x | + | 8 | = | - | 48 | x | x | − | 24 | x | + | 16 | ( | 2 | x | + | 1 | ) | + | 8 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | ( | 2 | x | + | 1 | ) | + | ( | 16 | x | − | 8 | x | × | 2 | ) |
128 | x | x | x | + | 64 | x | x | + | 8 | x | × | 2 | x | + | 8 | = | - | 48 | x | x | − | 24 | x | + | 16 | × | 2 | x | + | 16 | × | 1 | + | 8 | x |
128 | x | x | x | + | 64 | x | x | + | 16 | x | x | + | 8 | x | = | - | 48 | x | x | − | 24 | x | + | 32 | x | + | 16 | + | 8 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | ( | 2 | x | + | 1 | ) |
128 | x | x | x | + | 64 | x | x | + | 16 | x | x | + | 8 | x | = | - | 48 | x | x | + | 8 | x | + | 16 | + | 8 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | ( | 2 | x | + | 1 | ) | + | ( | 16 | x | − | 8 | x | × | 2 | ) | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) |
128 | x | x | x | + | 64 | x | x | + | 16 | x | x | + | 8 | x | = | - | 48 | x | x | + | 8 | x | + | 16 | + | 8 | x | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) | ( | 2 | x | + | 1 | ) | + | ( | 16 | x | − | 8 | x | × | 2 | ) | ( | 4 | x | × | 2 | + | 1 | + | 4 | x | ) |
128 | x | x | x | + | 64 | x | x | + | 16 | x | x | + | 8 | x | = | - | 48 | x | x | + | 8 | x | + | 16 | + | 8 | x | × | 4 | x | × | 2 | ( | 2 | x | + | 1 | ) |
128 | x | x | x | + | 64 | x | x | + | 16 | x | x | + | 8 | x | = | - | 48 | x | x | + | 8 | x | + | 16 | + | 64 | x | x | ( | 2 | x | + | 1 | ) | + | 8 | x |
128 | x | x | x | + | 64 | x | x | + | 16 | x | x | + | 8 | x | = | - | 48 | x | x | + | 8 | x | + | 16 | + | 64 | x | x | ( | 2 | x | + | 1 | ) | + | 8 | x |
128 | x | x | x | + | 64 | x | x | + | 16 | x | x | + | 8 | x | = | - | 48 | x | x | + | 8 | x | + | 16 | + | 64 | x | x | × | 2 | x | + | 64 |
128 | x | x | x | + | 64 | x | x | + | 16 | x | x | + | 8 | x | = | - | 48 | x | x | + | 8 | x | + | 16 | + | 128 | x | x | x | + | 64 | x |
128 | x | x | x | + | 64 | x | x | + | 16 | x | x | + | 8 | x | = | - | 48 | x | x | + | 8 | x | + | 16 | + | 128 | x | x | x | + | 64 | x |
128 | x | x | x | + | 64 | x | x | + | 16 | x | x | + | 8 | x | = | - | 48 | x | x | + | 8 | x | + | 16 | + | 128 | x | x | x | + | 64 | x |
128 | x | x | x | + | 64 | x | x | + | 16 | x | x | + | 8 | x | = | - | 48 | x | x | + | 8 | x | + | 16 | + | 128 | x | x | x | + | 64 | x |
128 | x | x | x | + | 64 | x | x | + | 16 | x | x | + | 8 | x | = | - | 48 | x | x | + | 16 | x | + | 16 | + | 128 | x | x | x | + | 64 | x |
x1=0 |