Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 4x2-16x+16 = (4x2+16-16x2)/(4x2+1+4x)+4x2+(16x-8x2)/(2x+1) .
    Question type: Equation
    Solution:Original question:
     4 x × 216 x + 16 = (4 x × 2 + 1616 x × 2) ÷ (4 x × 2 + 1 + 4 x ) + 4 x × 2 + (16 x 8 x × 2) ÷ (2 x + 1)
     Multiply both sides of the equation by:(4 x × 2 + 1 + 4 x )
     4 x × 2(4 x × 2 + 1 + 4 x )16 x (4 x × 2 + 1 + 4 x ) + 16(4 x × 2 + 1 + 4 x ) = (4 x × 2 + 1616 x × 2) + 4 x × 2(4 x × 2 + 1 + 4 x ) + (16 x 8 x × 2) ÷ (2 x + 1) × (4 x × 2 + 1 + 4 x )
    Remove a bracket on the left of the equation::
     4 x × 2 × 4 x × 2 + 4 x × 2 × 1 + 4 x = (4 x × 2 + 1616 x × 2) + 4 x × 2(4 x × 2 + 1 + 4 x ) + (16 x 8 x × 2) ÷ (2 x + 1) × (4 x × 2 + 1 + 4 x )
    Remove a bracket on the right of the equation::
     4 x × 2 × 4 x × 2 + 4 x × 2 × 1 + 4 x = 4 x × 2 + 1616 x × 2 + 4 x × 2(4 x × 2 + 1 + 4 x ) + (16 x 8 x × 2)
    The equation is reduced to :
     64 x x + 8 x + 32 x x 16 x (4 x × 2 + 1 + 4 x ) + 16 = 8 x + 1632 x + 8 x (4 x × 2 + 1 + 4 x ) + (16 x 8 x × 2) ÷ (2 x + 1) × (4 x × 2 + 1 + 4 x )
    The equation is reduced to :
     64 x x + 8 x + 32 x x 16 x (4 x × 2 + 1 + 4 x ) + 16 = - 24 x + 16 + 8 x (4 x × 2 + 1 + 4 x ) + (16 x 8 x × 2) ÷ (2 x + 1) × (4 x × 2 + 1 + 4 x )
     Multiply both sides of the equation by:(2 x + 1)
     64 x x (2 x + 1) + 8 x (2 x + 1) + 32 x x (2 x + 1)16 = - 24 x (2 x + 1) + 16(2 x + 1) + 8 x (4 x × 2 + 1 + 4 x )(2 x + 1) + (16 x 8 x × 2)(4 x × 2 + 1 + 4 x )
    Remove a bracket on the left of the equation:
     64 x x × 2 x + 64 x x × 1 + 8 x (2 x + 1) = - 24 x (2 x + 1) + 16(2 x + 1) + 8 x (4 x × 2 + 1 + 4 x )(2 x + 1) + (16 x 8 x × 2)(4 x × 2 + 1 + 4 x )
    Remove a bracket on the right of the equation::
     64 x x × 2 x + 64 x x × 1 + 8 x (2 x + 1) = - 24 x × 2 x 24 x × 1 + 16(2 x + 1) + 8 x (4 x × 2 + 1 + 4 x )
    The equation is reduced to :
     128 x x x + 64 x x + 8 x (2 x + 1) + 32 x = - 48 x x 24 x + 16(2 x + 1) + 8 x (4 x × 2 + 1 + 4 x )(2 x + 1) + (16 x 8 x × 2)
    Remove a bracket on the left of the equation:
     128 x x x + 64 x x + 8 x × 2 x + 8 = - 48 x x 24 x + 16(2 x + 1) + 8 x (4 x × 2 + 1 + 4 x )(2 x + 1) + (16 x 8 x × 2)
    Remove a bracket on the right of the equation::
     128 x x x + 64 x x + 8 x × 2 x + 8 = - 48 x x 24 x + 16 × 2 x + 16 × 1 + 8 x
    The equation is reduced to :
     128 x x x + 64 x x + 16 x x + 8 x = - 48 x x 24 x + 32 x + 16 + 8 x (4 x × 2 + 1 + 4 x )(2 x + 1)
    The equation is reduced to :
     128 x x x + 64 x x + 16 x x + 8 x = - 48 x x + 8 x + 16 + 8 x (4 x × 2 + 1 + 4 x )(2 x + 1) + (16 x 8 x × 2)(4 x × 2 + 1 + 4 x )
    Remove a bracket on the left of the equation:
     128 x x x + 64 x x + 16 x x + 8 x = - 48 x x + 8 x + 16 + 8 x (4 x × 2 + 1 + 4 x )(2 x + 1) + (16 x 8 x × 2)(4 x × 2 + 1 + 4 x )
    Remove a bracket on the right of the equation::
     128 x x x + 64 x x + 16 x x + 8 x = - 48 x x + 8 x + 16 + 8 x × 4 x × 2(2 x + 1)
    The equation is reduced to :
     128 x x x + 64 x x + 16 x x + 8 x = - 48 x x + 8 x + 16 + 64 x x (2 x + 1) + 8 x
    Remove a bracket on the left of the equation:
     128 x x x + 64 x x + 16 x x + 8 x = - 48 x x + 8 x + 16 + 64 x x (2 x + 1) + 8 x
    Remove a bracket on the right of the equation::
     128 x x x + 64 x x + 16 x x + 8 x = - 48 x x + 8 x + 16 + 64 x x × 2 x + 64
    The equation is reduced to :
     128 x x x + 64 x x + 16 x x + 8 x = - 48 x x + 8 x + 16 + 128 x x x + 64 x
    Remove a bracket on the left of the equation:
     128 x x x + 64 x x + 16 x x + 8 x = - 48 x x + 8 x + 16 + 128 x x x + 64 x
    Remove a bracket on the right of the equation::
     128 x x x + 64 x x + 16 x x + 8 x = - 48 x x + 8 x + 16 + 128 x x x + 64 x
    The equation is reduced to :
     128 x x x + 64 x x + 16 x x + 8 x = - 48 x x + 8 x + 16 + 128 x x x + 64 x
    The equation is reduced to :
     128 x x x + 64 x x + 16 x x + 8 x = - 48 x x + 16 x + 16 + 128 x x x + 64 x

    After the equation is converted into a general formula, there is a common factor:
    ( x +0 )
    From
        x + 0 = 0

    it is concluded that::
        x1=0

    Solutions that cannot be obtained by factorization:
        x2≈1.041667 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。