Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 20*(1+2t)*(1-0.3t)+8*(1+6t)*(1-0.25t) = [20*(1+2t)+8*(1+6t)]*(1-5/18t) .
    Question type: Equation
    Solution:Original question:
     20(1 + 2 t )(1
3
10
t ) + 8(1 + 6 t )(1
1
4
t ) = (20(1 + 2 t ) + 8(1 + 6 t ))(15 ÷ 18 × t )
    Remove the bracket on the left of the equation:
     Left side of the equation = 20 × 1(1
3
10
t ) + 20 × 2 t (1
3
10
t ) + 8(1 + 6 t )(1
1
4
t )
                                             = 20(1
3
10
t ) + 40 t (1
3
10
t ) + 8(1 + 6 t )(1
1
4
t )
                                             = 20 × 120 ×
3
10
t + 40 t (1
3
10
t ) + 8(1 + 6 t )(1
1
4
t )
                                             = 206 t + 40 t (1
3
10
t ) + 8(1 + 6 t )(1
1
4
t )
                                             = 206 t + 40 t × 140 t ×
3
10
t + 8(1 + 6 t )
                                             = 206 t + 40 t 12 t t + 8(1 + 6 t )(1
1
4
t )
                                             = 20 + 34 t 12 t t + 8(1 + 6 t )(1
1
4
t )
                                             = 20 + 34 t 12 t t + 8 × 1(1
1
4
t ) + 8 × 6 t
                                             = 20 + 34 t 12 t t + 8(1
1
4
t ) + 48 t (1
1
4
t )
                                             = 20 + 34 t 12 t t + 8 × 18 ×
1
4
t + 48
                                             = 20 + 34 t 12 t t + 82 t + 48 t (1
1
4
t )
                                             = 28 + 32 t 12 t t + 48 t (1
1
4
t )
                                             = 28 + 32 t 12 t t + 48 t × 148 t ×
1
4
                                             = 28 + 32 t 12 t t + 48 t 12 t t
                                             = 28 + 80 t 12 t t 12 t t
    The equation is transformed into :
     28 + 80 t 12 t t 12 t t = (20(1 + 2 t ) + 8(1 + 6 t ))(15 ÷ 18 × t )
    Remove the bracket on the right of the equation:
     Right side of the equation = 20(1 + 2 t )(15 ÷ 18 × t ) + 8(1 + 6 t )(15 ÷ 18 × t )
                                               = 20 × 1(15 ÷ 18 × t ) + 20 × 2 t (15 ÷ 18 × t ) + 8(1 + 6 t )(15 ÷ 18 × t )
                                               = 20(15 ÷ 18 × t ) + 40 t (15 ÷ 18 × t ) + 8(1 + 6 t )(15 ÷ 18 × t )
                                               = 20 × 120 × 5 ÷ 18 × t + 40 t (15 ÷ 18 × t ) + 8(1 + 6 t )(15 ÷ 18 × t )
                                               = 20
50
9
t + 40 t (15 ÷ 18 × t ) + 8(1 + 6 t )(15 ÷ 18 × t )
                                               = 20
50
9
t + 40 t × 140 t × 5 ÷ 18 × t + 8
                                               = 20
50
9
t + 40 t
100
9
t t + 8(1 + 6 t )(15 ÷ 18 × t )
                                               = 20 +
310
9
t
100
9
t t + 8(1 + 6 t )(15 ÷ 18 × t )
                                               = 20 +
310
9
t
100
9
t t + 8 × 1(15 ÷ 18 × t ) + 8 × 6 t

    After the equation is converted into a general formula, it is converted into:
    ( t - 0 )( 2t - 1 )=0
    From
        t - 0 = 0
        2t - 1 = 0

    it is concluded that::
        t1=0
        t2=
1
2
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。