Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x−300)×(1−0.25)/3300 = ((x−300)×(1−0.25)−75)/3150 .
    Question type: Equation
    Solution:Original question:
     ( x 300)(1
1
4
) ÷ 3300 = (( x 300)(1
1
4
)75) ÷ 3150
    Remove the bracket on the left of the equation:
     Left side of the equation = x (1
1
4
) ×
1
3300
300(1
1
4
) ×
1
3300
                                             = x (1
1
4
) ×
1
3300
1
11
(1
1
4
)
                                             = x × 1 ×
1
3300
x ×
1
4
×
1
3300
1
11
(1
1
4
)
                                             = x ×
1
3300
x ×
1
13200
1
11
(1
1
4
)
                                             =
1
4400
x
1
11
(1
1
4
)
                                             =
1
4400
x
1
11
× 1 +
1
11
×
1
4
                                             =
1
4400
x
1
11
+
1
44
                                             =
1
4400
x
3
44
    The equation is transformed into :
     
1
4400
x
3
44
= (( x 300)(1
1
4
)75) ÷ 3150
    Remove the bracket on the right of the equation:
     Right side of the equation = ( x 300)(1
1
4
) ×
1
3150
75 ×
1
3150
                                               = ( x 300)(1
1
4
) ×
1
3150
1
42
                                               = x (1
1
4
) ×
1
3150
300(1
1
4
) ×
1
3150
1
42
                                               = x (1
1
4
) ×
1
3150
2
21
(1
1
4
)
1
42
                                               = x × 1 ×
1
3150
x ×
1
4
×
1
3150
2
21
(1
1
4
)
1
42
                                               = x ×
1
3150
x ×
1
12600
2
21
(1
1
4
)
1
42
                                               =
1
4200
x
2
21
(1
1
4
)
1
42
                                               =
1
4200
x
2
21
× 1 +
2
21
×
1
4
1
42
                                               =
1
4200
x
2
21
+
1
42
1
42
                                               =
1
4200
x
2
21
    The equation is transformed into :
     
1
4400
x
3
44
=
1
4200
x
2
21

    Transposition :
     
1
4400
x
1
4200
x = -
2
21
+
3
44

    Combine the items on the left of the equation:
      -
1
92400
x = -
2
21
+
3
44

    Combine the items on the right of the equation:
      -
1
92400
x = -
25
924

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
25
924
=
1
92400
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
1
92400
x =
25
924

    The coefficient of the unknown number is reduced to 1 :
      x =
25
924
÷
1
92400
        =
25
924
× 92400
        = 25 × 100

    We obtained :
      x = 2500
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。