Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (y-1013)/1013*100-(-0.15) = (y-1011.47)/1011.47*100 .
    Question type: Equation
    Solution:Original question:
     ( y 1013) ÷ 1013 × 100( -
3
20
) = ( y
101147
100
) ÷
101147
100
× 100
     Left side of the equation = ( y 1013) ×
100
1013
( -
3
20
)
    The equation is transformed into :
     ( y 1013) ×
100
1013
( -
3
20
) = ( y
101147
100
) ÷
101147
100
× 100
    Remove the bracket on the left of the equation:
     Left side of the equation = y ×
100
1013
1013 ×
100
1013
( -
3
20
)
                                             = y ×
100
1013
101300
1013
( -
3
20
)
                                             =
100
1013
y
101300
1013
+
3
20
                                             =
100
1013
y
2022961
20260
    The equation is transformed into :
     
100
1013
y
2022961
20260
= ( y
101147
100
) ÷
101147
100
× 100
     Right side of the equation = ( y
101147
100
) ×
10000
101147
    The equation is transformed into :
     
100
1013
y
2022961
20260
= ( y
101147
100
) ×
10000
101147
    Remove the bracket on the right of the equation:
     Right side of the equation = y ×
10000
101147
101147
100
×
10000
101147
                                               = y ×
10000
101147
246700
2467
    The equation is transformed into :
     
100
1013
y
2022961
20260
=
10000
101147
y
246700
2467

    Transposition :
     
100
1013
y
10000
101147
y = -
246700
2467
+
2022961
20260

    Combine the items on the left of the equation:
      -
15300
102461911
y = -
246700
2467
+
2022961
20260

    Combine the items on the right of the equation:
      -
15300
102461911
y = -
7401
49340

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
7401
49340
=
15300
102461911
y

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
15300
102461911
y =
7401
49340

    The coefficient of the unknown number is reduced to 1 :
      y =
7401
49340
÷
15300
102461911
        =
7401
49340
×
102461911
15300
        =
2467
49340
×
102461911
5100

    We obtained :
      y =
252773534437
251634000
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。