Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (20(60-X)+300)(X-40) = 6080 .
    Question type: Equation
    Solution:Original question:
     (20(60 X ) + 300)( X 40) = 6080
    Remove the bracket on the left of the equation:
     Left side of the equation = 20(60 X )( X 40) + 300( X 40)
                                             = 20 × 60( X 40)20 X ( X 40) + 300( X 40)
                                             = 1200( X 40)20 X ( X 40) + 300( X 40)
                                             = 1200 X 1200 × 4020 X ( X 40) + 300( X 40)
                                             = 1200 X 4800020 X ( X 40) + 300( X 40)
                                             = 1200 X 4800020 X X + 20 X × 40 + 300( X 40)
                                             = 1200 X 4800020 X X + 800 X + 300( X 40)
                                             = 2000 X 4800020 X X + 300( X 40)
                                             = 2000 X 4800020 X X + 300 X 300 × 40
                                             = 2000 X 4800020 X X + 300 X 12000
                                             = 2300 X 6000020 X X
    The equation is transformed into :
     2300 X 6000020 X X = 6080

    After the equation is converted into a general formula, it is converted into:
    ( X - 56 )( X - 59 )=0
    From
        X - 56 = 0
        X - 59 = 0

    it is concluded that::
        X1=56
        X2=59
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。