Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (((0.1+2*x)/(1.1+x))*((0.1+2*x)/(1.1+x)))/((1-x)/(1.1+x)) = 0 .
    Question type: Equation
    Solution:Original question:
     (((
1
10
+ 2 x ) ÷ (
11
10
+ x ))((
1
10
+ 2 x ) ÷ (
11
10
+ x ))) ÷ ((1 x ) ÷ (
11
10
+ x )) = 0
     Multiply both sides of the equation by:((1 x ) ÷ (
11
10
+ x ))
     (((
1
10
+ 2 x ) ÷ (
11
10
+ x ))((
1
10
+ 2 x ) ÷ (
11
10
+ x ))) = 0
    Remove a bracket on the left of the equation::
     ((
1
10
+ 2 x ) ÷ (
11
10
+ x ))((
1
10
+ 2 x ) ÷ (
11
10
+ x )) = 0
    Remove a bracket on the left of the equation:
     (
1
10
+ 2 x ) ÷ (
11
10
+ x ) × ((
1
10
+ 2 x ) ÷ (
11
10
+ x )) = 0
     Multiply both sides of the equation by:(
11
10
+ x )
     (
1
10
+ 2 x )((
1
10
+ 2 x ) ÷ (
11
10
+ x )) = 0
    Remove a bracket on the left of the equation:
     
1
10
((
1
10
+ 2 x ) ÷ (
11
10
+ x )) + 2 x ((
1
10
+ 2 x ) ÷ (
11
10
+ x )) = 0
    Remove a bracket on the left of the equation:
     
1
10
(
1
10
+ 2 x ) ÷ (
11
10
+ x ) + 2 x ((
1
10
+ 2 x ) ÷ (
11
10
+ x )) = 0
     Multiply both sides of the equation by:(
11
10
+ x )
     
1
10
(
1
10
+ 2 x ) + 2 x ((
1
10
+ 2 x ) ÷ (
11
10
+ x ))(
11
10
+ x ) = 0
    Remove a bracket on the left of the equation:
     
1
10
×
1
10
+
1
10
× 2 x + 2 x ((
1
10
+ 2 x ) ÷ (
11
10
+ x ))(
11
10
+ x ) = 0
    The equation is reduced to :
     
1
100
+
1
5
x + 2 x ((
1
10
+ 2 x ) ÷ (
11
10
+ x ))(
11
10
+ x ) = 0
    Remove a bracket on the left of the equation:
     
1
100
+
1
5
x + 2 x (
1
10
+ 2 x ) ÷ (
11
10
+ x ) × (
11
10
+ x ) = 0
     Multiply both sides of the equation by:(
11
10
+ x )
     
1
100
(
11
10
+ x ) +
1
5
x (
11
10
+ x ) + 2 x (
1
10
+ 2 x )(
11
10
+ x ) = 0
    Remove a bracket on the left of the equation:
     
1
100
×
11
10
+
1
100
x +
1
5
x (
11
10
+ x ) + 2 x (
1
10
+ 2 x )(
11
10
+ x ) = 0
    The equation is reduced to :
     
11
1000
+
1
100
x +
1
5
x (
11
10
+ x ) + 2 x (
1
10
+ 2 x )(
11
10
+ x ) = 0
    Remove a bracket on the left of the equation:
     
11
1000
+
1
100
x +
1
5
x ×
11
10
+
1
5
x x + 2 x (
1
10
+ 2 x ) = 0
    The equation is reduced to :
     
11
1000
+
1
100
x +
11
50
x +
1
5
x x + 2 x (
1
10
+ 2 x )(
11
10
+ x ) = 0
    The equation is reduced to :
     
11
1000
+
23
100
x +
1
5
x x + 2 x (
1
10
+ 2 x )(
11
10
+ x ) = 0
    Remove a bracket on the left of the equation:
     
11
1000
+
23
100
x +
1
5
x x + 2 x ×
1
10
(
11
10
+ x ) + 2 x = 0
    The equation is reduced to :
     
11
1000
+
23
100
x +
1
5
x x +
1
5
x (
11
10
+ x ) + 4 x x = 0
    Remove a bracket on the left of the equation:
     
11
1000
+
23
100
x +
1
5
x x +
1
5
x ×
11
10
+
1
5
x x = 0
    The equation is reduced to :
     
11
1000
+
23
100
x +
1
5
x x +
11
50
x +
1
5
x x + 4 = 0
    The equation is reduced to :
     
11
1000
+
9
20
x +
1
5
x x +
1
5
x x + 4 x x = 0

    After the equation is converted into a general formula, it is converted into:
    ( 20x + 1 )( 20x + 1 )=0
    From
        20x + 1 = 0
        20x + 1 = 0

    it is concluded that::
        x1=-
1
20
        x2=-
1
20
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。