Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (100+5x)(140+3x)(150+2x) = 290(150+2x)(140+3x)-2x(140+3x)(140+3x)-3x(150+2x)(150+2x) .
    Question type: Equation
    Solution:Original question:
     (100 + 5 x )(140 + 3 x )(150 + 2 x ) = 290(150 + 2 x )(140 + 3 x )2 x (140 + 3 x )(140 + 3 x )3 x (150 + 2 x )(150 + 2 x )
    Remove the bracket on the left of the equation:
     Left side of the equation = 100(140 + 3 x )(150 + 2 x ) + 5 x (140 + 3 x )(150 + 2 x )
                                             = 100 × 140(150 + 2 x ) + 100 × 3 x (150 + 2 x ) + 5 x (140 + 3 x )(150 + 2 x )
                                             = 14000(150 + 2 x ) + 300 x (150 + 2 x ) + 5 x (140 + 3 x )(150 + 2 x )
                                             = 14000 × 150 + 14000 × 2 x + 300 x (150 + 2 x ) + 5 x (140 + 3 x )(150 + 2 x )
                                             = 2100000 + 28000 x + 300 x (150 + 2 x ) + 5 x (140 + 3 x )(150 + 2 x )
                                             = 2100000 + 28000 x + 300 x × 150 + 300 x × 2 x + 5 x
                                             = 2100000 + 28000 x + 45000 x + 600 x x + 5 x (140 + 3 x )(150 + 2 x )
                                             = 2100000 + 73000 x + 600 x x + 5 x (140 + 3 x )(150 + 2 x )
                                             = 2100000 + 73000 x + 600 x x + 5 x × 140(150 + 2 x ) + 5 x
                                             = 2100000 + 73000 x + 600 x x + 700 x (150 + 2 x ) + 15 x x
                                             = 2100000 + 73000 x + 600 x x + 700 x × 150 + 700 x × 2
                                             = 2100000 + 73000 x + 600 x x + 105000 x + 1400 x x + 15
                                             = 2100000 + 178000 x + 600 x x + 1400 x x + 15 x x
                                             = 2100000 + 178000 x + 600 x x + 1400 x x + 15 x x
                                             = 2100000 + 178000 x + 600 x x + 1400 x x + 2250 x x
    The equation is transformed into :
     2100000 + 178000 x + 600 x x + 1400 x x + 2250 x x = 290(150 + 2 x )(140 + 3 x )2 x (140 + 3 x )(140 + 3 x )3 x (150 + 2 x )(150 + 2 x )
    Remove the bracket on the right of the equation:
     Right side of the equation = 290 × 150(140 + 3 x ) + 290 × 2 x (140 + 3 x )2 x (140 + 3 x )(140 + 3 x )3
                                               = 43500(140 + 3 x ) + 580 x (140 + 3 x )2 x (140 + 3 x )(140 + 3 x )3 x (150 + 2 x )
                                               = 43500 × 140 + 43500 × 3 x + 580 x (140 + 3 x )2 x (140 + 3 x )(140 + 3 x )
                                               = 6090000 + 130500 x + 580 x (140 + 3 x )2 x (140 + 3 x )(140 + 3 x )3 x
                                               = 6090000 + 130500 x + 580 x × 140 + 580 x × 3 x 2 x
                                               = 6090000 + 130500 x + 81200 x + 1740 x x 2 x (140 + 3 x )(140 + 3 x )
                                               = 6090000 + 211700 x + 1740 x x 2 x (140 + 3 x )(140 + 3 x )3 x
                                               = 6090000 + 211700 x + 1740 x x 2 x × 140(140 + 3 x )2 x
                                               = 6090000 + 211700 x + 1740 x x 280 x (140 + 3 x )6 x x

    After the equation is converted into a general formula, there is a common factor:
    ( 2x + 133 )
    From
        2x + 133 = 0

    it is concluded that::
        x1=-
133
2

    Solutions that cannot be obtained by factorization:
        x2≈-52.412684 , keep 6 decimal places
        x3≈19.079351 , keep 6 decimal places
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。