Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1/(x+0.125) = 1/x+1/x+1/(x+5)+1/(x+20)+1/(x+50) .
    Question type: Equation
    Solution:Original question:
     1 ÷ ( x +
1
8
) = 1 ÷ x + 1 ÷ x + 1 ÷ ( x + 5) + 1 ÷ ( x + 20) + 1 ÷ ( x + 50)
     Multiply both sides of the equation by:( x +
1
8
) ,   x
     1 x = 1( x +
1
8
) + 1 ÷ x × ( x +
1
8
) x + 1 ÷ ( x + 5) × ( x +
1
8
) x + 1 ÷ ( x + 20)
    Remove a bracket on the right of the equation::
     1 x = 1 x + 1 ×
1
8
+ 1 ÷ x × ( x +
1
8
) x + 1 ÷ ( x + 5) × ( x +
1
8
) x
    The equation is reduced to :
     1 x = 1 x +
1
8
+ 1 ÷ x × ( x +
1
8
) x + 1 ÷ ( x + 5) × ( x +
1
8
) x + 1
     Multiply both sides of the equation by:( x + 5)
     1 x ( x + 5) = 1 x ( x + 5) +
1
8
( x + 5) + 1 ÷ 1 × ( x +
1
8
) × 1( x + 5) + 1( x +
1
8
)
    Remove a bracket on the left of the equation:
     1 x x + 1 x × 5 = 1 x ( x + 5) +
1
8
( x + 5) + 1 ÷ 1 × ( x +
1
8
) × 1( x + 5) + 1( x +
1
8
)
    Remove a bracket on the right of the equation::
     1 x x + 1 x × 5 = 1 x x + 1 x × 5 +
1
8
( x + 5) + 1 ÷ 1 × ( x +
1
8
) × 1
    The equation is reduced to :
     1 x x + 5 x = 1 x x + 5 x +
1
8
( x + 5) + 1( x +
1
8
)( x + 5) + 1( x +
1
8
)
     Multiply both sides of the equation by:( x + 20)
     1 x x ( x + 20) + 5 x ( x + 20) = 1 x x ( x + 20) + 5 x ( x + 20) +
1
8
( x + 5)( x + 20) + 1( x +
1
8
)
    Remove a bracket on the left of the equation:
     1 x x x + 1 x x × 20 + 5 x ( x + 20) = 1 x x ( x + 20) + 5 x ( x + 20) +
1
8
( x + 5)( x + 20) + 1( x +
1
8
)
    Remove a bracket on the right of the equation::
     1 x x x + 1 x x × 20 + 5 x ( x + 20) = 1 x x x + 1 x x × 20 + 5 x ( x + 20) +
1
8
    The equation is reduced to :
     1 x x x + 20 x x + 5 x ( x + 20) = 1 x x x + 20 x x + 5 x ( x + 20) +
1
8
( x + 5)
     Multiply both sides of the equation by:( x + 50)
     1 x x x ( x + 50) + 20 x x ( x + 50) + 5 x ( x + 20) = 1 x x x ( x + 50) + 20 x x ( x + 50) + 5 x ( x + 20)
    Remove a bracket on the left of the equation:
     1 x x x x + 1 x x x × 50 + 20 x = 1 x x x ( x + 50) + 20 x x ( x + 50) + 5 x ( x + 20)
    Remove a bracket on the right of the equation::
     1 x x x x + 1 x x x × 50 + 20 x = 1 x x x x + 1 x x x × 50 + 20 x
    The equation is reduced to :
     1 x x x x + 50 x x x + 20 x x = 1 x x x x + 50 x x x + 20 x x
    Remove a bracket on the left of the equation:
     1 x x x x + 50 x x x + 20 x x = 1 x x x x + 50 x x x + 20 x x
    Remove a bracket on the right of the equation::
     1 x x x x + 50 x x x + 20 x x = 1 x x x x + 50 x x x + 20 x x
    The equation is reduced to :
     1 x x x x + 50 x x x + 20 x x = 1 x x x x + 50 x x x + 20 x x
    Remove a bracket on the left of the equation:
     1 x x x x + 50 x x x + 20 x x = 1 x x x x + 50 x x x + 20 x x
    Remove a bracket on the right of the equation::
     1 x x x x + 50 x x x + 20 x x = 1 x x x x + 50 x x x + 20 x x

    The solution of the equation:
        x1≈-40.246850 , keep 6 decimal places
        x2≈-13.722157 , keep 6 decimal places
        x3≈-2.177367 , keep 6 decimal places
        x4≈-0.259875 , keep 6 decimal places
    
    There are 4 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。