Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (63.7x-382.2)*(x-6)*(x-6) = 1.2*(x-4)*(x-4)*(6.076x+42.656) .
    Question type: Equation
    Solution:Original question:
     (
637
10
x
1911
5
)( x 6)( x 6) =
6
5
( x 4)( x 4)(
1519
250
x +
5332
125
)
    Remove the bracket on the left of the equation:
     Left side of the equation =
637
10
x ( x 6)( x 6)
1911
5
( x 6)( x 6)
                                             =
637
10
x x ( x 6)
637
10
x × 6( x 6)
1911
5
( x 6)( x 6)
                                             =
637
10
x x ( x 6)
1911
5
x ( x 6)
1911
5
( x 6)( x 6)
                                             =
637
10
x x x
637
10
x x × 6
1911
5
x ( x 6)
1911
5
                                             =
637
10
x x x
1911
5
x x
1911
5
x ( x 6)
1911
5
( x 6)
                                             =
637
10
x x x
1911
5
x x
1911
5
x x +
1911
5
x
                                             =
637
10
x x x
1911
5
x x
1911
5
x x +
11466
5
x
                                             =
637
10
x x x
1911
5
x x
1911
5
x x +
11466
5
x
                                             =
637
10
x x x
1911
5
x x
1911
5
x x +
11466
5
x
                                             =
637
10
x x x
1911
5
x x
1911
5
x x +
11466
5
x
                                             =
637
10
x x x
1911
5
x x
1911
5
x x +
11466
5
x
                                             =
637
10
x x x
1911
5
x x
1911
5
x x +
22932
5
x
                                             =
637
10
x x x
1911
5
x x
1911
5
x x +
22932
5
x
                                             =
637
10
x x x
1911
5
x x
1911
5
x x +
22932
5
x
                                             =
637
10
x x x
1911
5
x x
1911
5
x x +
34398
5
x
    The equation is transformed into :
     
637
10
x x x
1911
5
x x
1911
5
x x +
34398
5
x =
6
5
( x 4)( x 4)(
1519
250
x +
5332
125
)
    Remove the bracket on the right of the equation:
     Right side of the equation =
6
5
x ( x 4)(
1519
250
x +
5332
125
)
6
5
× 4( x 4)(
1519
250
x +
5332
125
)
                                               =
6
5
x ( x 4)(
1519
250
x +
5332
125
)
24
5
( x 4)(
1519
250
x +
5332
125
)
                                               =
6
5
x x (
1519
250
x +
5332
125
)
6
5
x × 4(
1519
250
x +
5332
125
)
24
5
( x 4)(
1519
250
x +
5332
125
)
                                               =
6
5
x x (
1519
250
x +
5332
125
)
24
5
x (
1519
250
x +
5332
125
)
24
5
( x 4)(
1519
250
x +
5332
125
)
                                               =
6
5
x x ×
1519
250
x +
6
5
x x ×
5332
125
24
5
x (
1519
250
x +
5332
125
)
                                               =
4557
625
x x x +
31992
625
x x
24
5
x (
1519
250
x +
5332
125
)
24
5
( x 4)
                                               =
4557
625
x x x +
31992
625
x x
24
5
x ×
1519
250
x
24
5
                                               =
4557
625
x x x +
31992
625
x x
18228
625
x x
127968
625
x
                                               =
4557
625
x x x +
31992
625
x x
18228
625
x x
127968
625
x

    
        x≈10.267995 , keep 6 decimal places
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。