Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x-21)/3+(x-17)/7+(x-13)/11 = 3 .
    Question type: Equation
    Solution:Original question:
     ( x 21) ÷ 3 + ( x 17) ÷ 7 + ( x 13) ÷ 11 = 3
    Remove the bracket on the left of the equation:
     Left side of the equation = x ×
1
3
21 ×
1
3
+ ( x 17) ×
1
7
+ ( x 13) ×
1
11
                                             = x ×
1
3
7 + ( x 17) ×
1
7
+ ( x 13) ×
1
11
                                             =
1
3
x 7 + x ×
1
7
17 ×
1
7
+ ( x 13) ×
1
11
                                             =
1
3
x 7 + x ×
1
7
17
7
+ ( x 13) ×
1
11
                                             =
10
21
x
66
7
+ ( x 13) ×
1
11
                                             =
10
21
x
66
7
+ x ×
1
11
13 ×
1
11
                                             =
10
21
x
66
7
+ x ×
1
11
13
11
                                             =
131
231
x
817
77
    The equation is transformed into :
     
131
231
x
817
77
= 3

    Transposition :
     
131
231
x = 3 +
817
77

    Combine the items on the right of the equation:
     
131
231
x =
1048
77

    The coefficient of the unknown number is reduced to 1 :
      x =
1048
77
÷
131
231
        =
1048
77
×
231
131
        = 1048 ×
3
131

    We obtained :
      x =
3144
131
    This is the solution of the equation.

    By reducing fraction, we can get:
      x = 24



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。