Mathematics
         
语言:中文    Language:English
Matrix multiplication:
    Enter two matrices that can be multiplied, with each element separated by a comma and each row ending with a semicolon.
    Note that mathematical functions and variables are not supported.
    Current location:Linear algebra >Matrix multiplication >History of matrix multiplication
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &1\ &2\ \\ &2\ &1\ \end{pmatrix}\times \begin{pmatrix} &1\ &2\ \\ &2\ &1\ \end{pmatrix}}\\ \end{aligned}$$
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &1\ &2\ \\ &3\ &4\ \end{pmatrix}\times \begin{pmatrix} &7\ &10\ \\ &15\ &22\ \end{pmatrix}}\\ \end{aligned}$$
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &1\ &2\ \\ &3\ &4\ \end{pmatrix}\times \begin{pmatrix} &1\ &2\ \\ &3\ &4\ \end{pmatrix}}\\ \end{aligned}$$
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &8\ &1\ &6\ \\ &3\ &5\ &7\ \\ &4\ &9\ &2\ \end{pmatrix}\times \begin{pmatrix} &\frac{53}{360}\ &-\frac{13}{90}\ &\frac{23}{360}\ \\ &-\frac{11}{180}\ &\frac{1}{45}\ &\frac{19}{180}\ \\ &-\frac{7}{360}\ &\frac{17}{90}\ &-\frac{37}{360}\ \end{pmatrix}}\\ \end{aligned}$$
    $$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &1\ &43\ &26\ &32\ \\ &74\ &37\ &59\ &86\ \\ &24\ &56\ &85\ &37\ \\ &96\ &45\ &28\ &43\ \end{pmatrix}\times \begin{pmatrix} &-\frac{23506}{1943373}\ &-\frac{7025}{3886746}\ &\frac{4331}{3886746}\ &\frac{15103}{1295582}\ \\ &\frac{16749}{647791}\ &-\frac{19053}{1295582}\ &-\frac{1901}{1295582}\ &\frac{14813}{1295582}\ \\ &-\frac{110617}{5830119}\ &\frac{28369}{11660238}\ &\frac{208799}{11660238}\ &-\frac{23921}{3886746}\ \\ &\frac{71713}{5830119}\ &\frac{208031}{11660238}\ &-\frac{147065}{11660238}\ &-\frac{41695}{3886746}\ \end{pmatrix}}\\ \end{aligned}$$

First page << Page26 Page27 Page28 Page29 ... ... Page35 Page36 Page37 >> Last page 共37页
The properties of matrix multiplication:


(i) Combining Law: (A b)C=A(b C)
(ii) Distribution Law: A ( B + C ) = A B + A C either or ( A + B ) C = A C + B C .
(iii) λ ( A B ) = ( λ A ) B = A ( λ B ) .
Among them, A, B, and C are the matrices that make the multiplication of the above matrices meaningful, λ It's a number.



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。