Mathematics
         
语言:中文    Language:English
Get the inverse matrix:
    Enter an invertible matrix, with each element separated by a comma and each row ending with a semicolon.
    Note that mathematical functions and variables are not supported.
    Current location:Linear algebra >Inverse matrix >History of inverse matrices >Answer

$$\begin{aligned}&\\ \color{black}{Calcu}&\color{black}{late\ the\ inverse\ matrix\ of\ } \ \ \begin{pmatrix} &1\ &3\ &2\ &3\ &4\ \\ &3\ &8\ &6\ &7\ &9\ \\ &2\ &6\ &5\ &7\ &8\ \\ &3\ &7\ &7\ &8\ &10\ \\ &4\ &9\ &8\ &10\ &17\ \end{pmatrix}\color{black}{\ .}\\ \\Solu&tion:\\ &\begin{pmatrix} &1\ &3\ &2\ &3\ &4\ \\ &3\ &8\ &6\ &7\ &9\ \\ &2\ &6\ &5\ &7\ &8\ \\ &3\ &7\ &7\ &8\ &10\ \\ &4\ &9\ &8\ &10\ &17\ \end{pmatrix}\\\\&\color{grey}{Using\ the\ elementary\ transformation\ of\ the\ matrix\ to\ find\ the\ inverse\ matrix:}\\&\left (\begin{array} {cccccc | ccccc} &1\ &3\ &2\ &3\ &4\ &1\ &0\ &0\ &0\ &0\ \\ &3\ &8\ &6\ &7\ &9\ &0\ &1\ &0\ &0\ &0\ \\ &2\ &6\ &5\ &7\ &8\ &0\ &0\ &1\ &0\ &0\ \\ &3\ &7\ &7\ &8\ &10\ &0\ &0\ &0\ &1\ &0\ \\ &4\ &9\ &8\ &10\ &17\ &0\ &0\ &0\ &0\ &1\ \\\end{array} \right )\\\\&\color{grey}{Transfprming\ a\ known\ matrix\ into\ an\ upper\ triangular\ matrix :}\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &3\ &2\ &3\ &4\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &-1\ &0\ &-2\ &-3\ &-3\ &1\ &0\ &0\ &0\ \\ &0\ &0\ &1\ &1\ &0\ &-2\ &0\ &1\ &0\ &0\ \\ &0\ &-2\ &1\ &-1\ &-2\ &-3\ &0\ &0\ &1\ &0\ \\ &0\ &-3\ &0\ &-2\ &1\ &-4\ &0\ &0\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &3\ &2\ &3\ &4\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &-1\ &0\ &-2\ &-3\ &-3\ &1\ &0\ &0\ &0\ \\ &0\ &0\ &1\ &1\ &0\ &-2\ &0\ &1\ &0\ &0\ \\ &0\ &0\ &1\ &3\ &4\ &3\ &-2\ &0\ &1\ &0\ \\ &0\ &0\ &0\ &4\ &10\ &5\ &-3\ &0\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &3\ &2\ &3\ &4\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &-1\ &0\ &-2\ &-3\ &-3\ &1\ &0\ &0\ &0\ \\ &0\ &0\ &1\ &1\ &0\ &-2\ &0\ &1\ &0\ &0\ \\ &0\ &0\ &0\ &2\ &4\ &5\ &-2\ &-1\ &1\ &0\ \\ &0\ &0\ &0\ &4\ &10\ &5\ &-3\ &0\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &3\ &2\ &3\ &4\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &-1\ &0\ &-2\ &-3\ &-3\ &1\ &0\ &0\ &0\ \\ &0\ &0\ &1\ &1\ &0\ &-2\ &0\ &1\ &0\ &0\ \\ &0\ &0\ &0\ &2\ &4\ &5\ &-2\ &-1\ &1\ &0\ \\ &0\ &0\ &0\ &0\ &2\ &-5\ &1\ &2\ &-2\ &1\ \\\end{array} \right )\\\\&\color{grey}{Convert\ elements\ above\ the\ diagonal\ to\ 0}\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &3\ &2\ &3\ &0\ &11\ &-2\ &-4\ &4\ &-2\ \\ &0\ &-1\ &0\ &-2\ &0\ &-\frac{21}{2}\ &\frac{5}{2}\ &3\ &-3\ &\frac{3}{2}\ \\ &0\ &0\ &1\ &1\ &0\ &-2\ &0\ &1\ &0\ &0\ \\ &0\ &0\ &0\ &2\ &0\ &15\ &-4\ &-5\ &5\ &-2\ \\ &0\ &0\ &0\ &0\ &2\ &-5\ &1\ &2\ &-2\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &3\ &2\ &0\ &0\ &-\frac{23}{2}\ &4\ &\frac{7}{2}\ &-\frac{7}{2}\ &1\ \\ &0\ &-1\ &0\ &0\ &0\ &\frac{9}{2}\ &-\frac{3}{2}\ &-2\ &2\ &-\frac{1}{2}\ \\ &0\ &0\ &1\ &0\ &0\ &-\frac{19}{2}\ &2\ &\frac{7}{2}\ &-\frac{5}{2}\ &1\ \\ &0\ &0\ &0\ &2\ &0\ &15\ &-4\ &-5\ &5\ &-2\ \\ &0\ &0\ &0\ &0\ &2\ &-5\ &1\ &2\ &-2\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &3\ &0\ &0\ &0\ &\frac{15}{2}\ &0\ &-\frac{7}{2}\ &\frac{3}{2}\ &-1\ \\ &0\ &-1\ &0\ &0\ &0\ &\frac{9}{2}\ &-\frac{3}{2}\ &-2\ &2\ &-\frac{1}{2}\ \\ &0\ &0\ &1\ &0\ &0\ &-\frac{19}{2}\ &2\ &\frac{7}{2}\ &-\frac{5}{2}\ &1\ \\ &0\ &0\ &0\ &2\ &0\ &15\ &-4\ &-5\ &5\ &-2\ \\ &0\ &0\ &0\ &0\ &2\ &-5\ &1\ &2\ &-2\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &0\ &0\ &0\ &0\ &21\ &-\frac{9}{2}\ &-\frac{19}{2}\ &\frac{15}{2}\ &-\frac{5}{2}\ \\ &0\ &-1\ &0\ &0\ &0\ &\frac{9}{2}\ &-\frac{3}{2}\ &-2\ &2\ &-\frac{1}{2}\ \\ &0\ &0\ &1\ &0\ &0\ &-\frac{19}{2}\ &2\ &\frac{7}{2}\ &-\frac{5}{2}\ &1\ \\ &0\ &0\ &0\ &2\ &0\ &15\ &-4\ &-5\ &5\ &-2\ \\ &0\ &0\ &0\ &0\ &2\ &-5\ &1\ &2\ &-2\ &1\ \\\end{array} \right )\\\\&\color{grey}{Convert\ elements\ on\ the\ main\ diagonal\ to\ 1}\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &0\ &0\ &0\ &0\ &21\ &-\frac{9}{2}\ &-\frac{19}{2}\ &\frac{15}{2}\ &-\frac{5}{2}\ \\ &0\ &1\ &0\ &0\ &0\ &-\frac{9}{2}\ &\frac{3}{2}\ &2\ &-2\ &\frac{1}{2}\ \\ &0\ &0\ &1\ &0\ &0\ &-\frac{19}{2}\ &2\ &\frac{7}{2}\ &-\frac{5}{2}\ &1\ \\ &0\ &0\ &0\ &2\ &0\ &15\ &-4\ &-5\ &5\ &-2\ \\ &0\ &0\ &0\ &0\ &2\ &-5\ &1\ &2\ &-2\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &0\ &0\ &0\ &0\ &21\ &-\frac{9}{2}\ &-\frac{19}{2}\ &\frac{15}{2}\ &-\frac{5}{2}\ \\ &0\ &1\ &0\ &0\ &0\ &-\frac{9}{2}\ &\frac{3}{2}\ &2\ &-2\ &\frac{1}{2}\ \\ &0\ &0\ &1\ &0\ &0\ &-\frac{19}{2}\ &2\ &\frac{7}{2}\ &-\frac{5}{2}\ &1\ \\ &0\ &0\ &0\ &1\ &0\ &\frac{15}{2}\ &-2\ &-\frac{5}{2}\ &\frac{5}{2}\ &-1\ \\ &0\ &0\ &0\ &0\ &2\ &-5\ &1\ &2\ &-2\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &0\ &0\ &0\ &0\ &21\ &-\frac{9}{2}\ &-\frac{19}{2}\ &\frac{15}{2}\ &-\frac{5}{2}\ \\ &0\ &1\ &0\ &0\ &0\ &-\frac{9}{2}\ &\frac{3}{2}\ &2\ &-2\ &\frac{1}{2}\ \\ &0\ &0\ &1\ &0\ &0\ &-\frac{19}{2}\ &2\ &\frac{7}{2}\ &-\frac{5}{2}\ &1\ \\ &0\ &0\ &0\ &1\ &0\ &\frac{15}{2}\ &-2\ &-\frac{5}{2}\ &\frac{5}{2}\ &-1\ \\ &0\ &0\ &0\ &0\ &1\ &-\frac{5}{2}\ &\frac{1}{2}\ &1\ &-1\ &\frac{1}{2}\ \\\end{array} \right )\\\\&\color{grey}{The\ inverse\ matrix\ obtained\ is\ : }\\&\begin{pmatrix} &21\ &-\frac{9}{2}\ &-\frac{19}{2}\ &\frac{15}{2}\ &-\frac{5}{2}\ \\ &-\frac{9}{2}\ &\frac{3}{2}\ &2\ &-2\ &\frac{1}{2}\ \\ &-\frac{19}{2}\ &2\ &\frac{7}{2}\ &-\frac{5}{2}\ &1\ \\ &\frac{15}{2}\ &-2\ &-\frac{5}{2}\ &\frac{5}{2}\ &-1\ \\ &-\frac{5}{2}\ &\frac{1}{2}\ &1\ &-1\ &\frac{1}{2}\ \end{pmatrix}\end{aligned}$$

你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


Elementary transformations of matrices:


Definition:Applying the following three transformations to the rows (columns) of a matrix becomes the elementary transformation of the matrix
(1) Swap the positions of two rows (columns) in a matrix;
(2) Using non-zero constants λ Multiply a certain row (column) of a matrix;
(3) Convert a row (column) of a matrix γ Multiply to another row (column) of the matrix.



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。