Mathematics
         
语言:中文    Language:English
Matrix multiplication:
    Enter two matrices that can be multiplied, with each element separated by a comma and each row ending with a semicolon.
    Note that mathematical functions and variables are not supported.
    Current location:Linear algebra >Matrix multiplication >History of matrix multiplication >Answer

$$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &3\ &2\ &1\ \\ &-2\ &1\ &2\ \\ &1\ &3\ &2\ \end{pmatrix}\times \begin{pmatrix} &1\ &-1\ &0\ \\ &2\ &-2\ &5\ \\ &3\ &4\ &1\ \end{pmatrix}}\\ \\Solution:&\\&\begin{pmatrix} &3\ &2\ &1\ \\ &-2\ &1\ &2\ \\ &1\ &3\ &2\ \end{pmatrix}\times \begin{pmatrix} &1\ &-1\ &0\ \\ &2\ &-2\ &5\ \\ &3\ &4\ &1\ \end{pmatrix}\\\\=\ \ &\begin{pmatrix} &10\ &-3\ &11\ \\ &6\ &8\ &7\ \\ &13\ &1\ &17\ \end{pmatrix}\end{aligned}$$

你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


The properties of matrix multiplication:


(i) Combining Law: (A b)C=A(b C)
(ii) Distribution Law: A ( B + C ) = A B + A C either or ( A + B ) C = A C + B C .
(iii) λ ( A B ) = ( λ A ) B = A ( λ B ) .
Among them, A, B, and C are the matrices that make the multiplication of the above matrices meaningful, λ It's a number.



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。