Mathematics
         
语言:中文    Language:English
Matrix multiplication:
    Enter two matrices that can be multiplied, with each element separated by a comma and each row ending with a semicolon.
    Note that mathematical functions and variables are not supported.
    Current location:Linear algebra >Matrix multiplication >History of matrix multiplication >Answer

$$ \begin{aligned}&\\ \color{black}{Calculate }& \color{black}{\ \ \begin{pmatrix} &-1\ &-2\ &-2\ \\ &-2\ &-1\ &0\ \\ &-3\ &-2\ &-1\ \end{pmatrix}\times \begin{pmatrix} &1\ &0\ &0\ \\ &0\ &1\ &2\ \\ &-1\ &0\ &1\ \end{pmatrix}}\\ \\Solution:&\\&\begin{pmatrix} &-1\ &-2\ &-2\ \\ &-2\ &-1\ &0\ \\ &-3\ &-2\ &-1\ \end{pmatrix}\times \begin{pmatrix} &1\ &0\ &0\ \\ &0\ &1\ &2\ \\ &-1\ &0\ &1\ \end{pmatrix}\\\\=\ \ &\begin{pmatrix} &1\ &-2\ &-6\ \\ &-2\ &-1\ &-2\ \\ &-2\ &-2\ &-5\ \end{pmatrix}\end{aligned}$$

你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


The properties of matrix multiplication:


(i) Combining Law: (A b)C=A(b C)
(ii) Distribution Law: A ( B + C ) = A B + A C either or ( A + B ) C = A C + B C .
(iii) λ ( A B ) = ( λ A ) B = A ( λ B ) .
Among them, A, B, and C are the matrices that make the multiplication of the above matrices meaningful, λ It's a number.



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。