Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > On line Solution of Monovariate Equation > The history of univariate equation calculation
    x²=(6x(x²/36-5x²/36)²)/x²*x²
    0.8431×6.28=6.28x-sin(2πx)+0.15×6.28×(3x-1.25)
    0.3922*{(x-sin(2πx)/2π)+(3x-1.25)*0.15}=2/3*{(sin(πx))^3/π}+0.15*419/500*{sin(πx)+sin(1.25π-2πx)}/π
    0.6776x-0.0782sin(2πx)-0.0778=0.2122(sin(πx))^3+0.0364sin(πx)+0.0364sin(1.25π-2πx)
    0.42x-0.066845sin(πx)+0.189x-0.07875 = 0.2122(sin(πx)^3)+0.0409sin(πx)+0.0409sin(π(1.25-2x))
    (x^4)+(x^3)+(x^2)+x+1=0
    0.573*{(x-sin(2πx)/2π)+(3x-1.25)*0.134}=2/3*{(sin(πx))^3/π}+0.134*440/500*{sin(πx)+sin(1.25π-2πx)}/π
    [70%x-( x -45)]x10=[ x -25-( x -45)]x12
    -3x=210
    0.5302x-0.0844sin(2πx)-0.0609=0.2122(sin(πx))^3+0.0364sin(πx)+0.0364sin(1.25π-2πx)
    0.5812*{(x-sin(2πx)/2π)+(3x-1.25)*0.129}=2/3*{(sin(πx))^3/π}+0.129*518/600*{sin(πx)+sin(1.25π-2πx)}/π
    V=8720651.653-749976.0422-(0.0435V+32623.9578357)-279060.8529-566842.3574-(0.18V+134995.687596)
    x^2+6x-3=0
    x^2+6x-3=0
    x^2+6x-3=0
    x=3*(6-3*2^0.5)+(3*(6-3*2^0.5)^2/((6-3*2^0.5)-6))
    0.351=0.2174x-0.01
    0.44x-0.070028sin(πx)+0.1716x-0.0715 = 0.2122(sin(πx)^3)+0.03699sin(πx)+0.03699sin(π(1.25-2x))
    2x+(55-x)×4
    20+x÷(100+x)

Home page << page1459 page1460 page1461 page1462 page1463 ... ... page1474 page1475 page1476 page1477 page1478 >> Last page 31044 pages in total



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。