Mathematics
         
语言:中文    Language:English
On line solution of multivariate equations:
    First set the elements of the equation (i.e. the number of unknowns), then click the "Next" button to enter the coefficients of each element of the equation set, and click the "Next" button to obtain the solution of the equation set.
    Note that the coefficients of each element of the equation system can only be numbers, not algebraic expressions (including mathematical functions).
    Current location:Equations > Multivariate equations > Answer
detailed information:
The input equation set is:
 x + y = 
113
20
    (1)
 
61
200
x 
61
200
y + 
3
10
z = 0    (2)
 
3
10
y + 
3
10
z = 1    (3)
Question solving process:

Multiply both sides of equation (1) by 61
Divide the two sides of equation (1) by 200, the equation can be obtained:
         
61
200
x + 
61
200
y = 
6893
4000
    (4)
, then subtract both sides of equation (4) from both sides of equation (2), the equations are reduced to:
 x + y = 
113
20
    (1)
61
100
y + 
3
10
z = 
6893
4000
    (2)
 
3
10
y + 
3
10
z = 1    (3)

Multiply both sides of equation (2) by 30
Divide the two sides of equation (2) by 61, the equation can be obtained:
        
3
10
y + 
9
61
z = 
339
400
    (5)
, then add the two sides of equation (5) to both sides of equation (3), the equations are reduced to:
 x + y = 
113
20
    (1)
61
100
y + 
3
10
z = 
6893
4000
    (2)
 
273
610
z = 
61
400
    (3)

Multiply both sides of equation (3) by 61
Divide both sides of equation (3) by 91, get the equation:
         
3
10
z = 
3721
36400
    (6)
, then subtract both sides of equation (6) from both sides of equation (2), get the equation:
 x + y = 
113
20
    (1)
61
100
y = 
664473
364000
    (2)
 
273
610
z = 
61
400
    (3)

Multiply both sides of equation (2) by 100
Divide both sides of equation (2) by 61, get the equation:
        -1y = 
10893
3640
    (7)
, then add the two sides of equation (7) to both sides of equation (1), get the equation:
 x = 
9673
3640
    (1)
61
100
y = 
664473
364000
    (2)
 z = 
3721
10920
    (3)

The coefficient of the unknown number is reduced to 1, and the equations are reduced to:
 x = 
9673
3640
    (1)
 y = 
10893
3640
    (2)
 z = 
3721
10920
    (3)


Therefore, the solution of the equation set is:
x = 
9673
3640
y = 
10893
3640
z = 
3721
10920


Convert the solution of the equation set to decimals:
x = 2.657418
y = 2.992582
z = 0.340751

解方程组的详细方法请参阅:《多元一次方程组的解法》







  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。