Mathematics
         
语言:中文    Language:English
Mathematical calculation:
    Enter the mathematical formula directly and click the "Next" button to get the calculation answer.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Mathematical Computation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (27000-3.88x)÷(25.99x+4.33x) = 3.83% .
    Question type: Equation
    Solution:Original question:
     (27000
97
25
x ) ÷ (
2599
100
x +
433
100
x ) =
383
10000
     Multiply both sides of the equation by:(
2599
100
x +
433
100
x )
     (27000
97
25
x ) =
383
10000
(
2599
100
x +
433
100
x )
    Remove a bracket on the left of the equation::
     27000
97
25
x =
383
10000
(
2599
100
x +
433
100
x )
    Remove a bracket on the right of the equation::
     27000
97
25
x =
383
10000
×
2599
100
x +
383
10000
×
433
100
x
    The equation is reduced to :
     27000
97
25
x =
995417
1000000
x +
165839
1000000
x
    The equation is reduced to :
     27000
97
25
x =
145157
125000
x

    Transposition :
      -
97
25
x
145157
125000
x = - 27000

    Combine the items on the left of the equation:
      -
630157
125000
x = - 27000

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     27000 =
630157
125000
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
630157
125000
x = 27000

    The coefficient of the unknown number is reduced to 1 :
      x = 27000 ÷
630157
125000
        = 27000 ×
125000
630157

    We obtained :
      x =
3375000000
630157
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 5355.808156



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。