Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Fold
                                Inequality
                                Mathematics
                                Fractions
                                Statistics
                                Prime factor
                                Fraction and Decimal Interactions
                                Lenders ToolBox
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Mathematical calculation:
    Enter the mathematical formula directly and click the "Next" button to get the calculation answer.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Mathematical Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 integer calculations

[1/1 Integer column vertical calculation]
    Question type: Integer multiplication
    Original question: 71507458524664155792360677749540281852974801616896*71507458524664155792360677749540281852974801616896p;Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 4{x}^{4} + 3{x}^{2}{y}^{3} - 2{x}^{2}{y}^{4} + xy + 5\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4x^{4} + 3y^{3}x^{2} - 2y^{4}x^{2} + yx + 5\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4x^{4} + 3y^{3}x^{2} - 2y^{4}x^{2} + yx + 5\right)}{dx}\\=&4*4x^{3} + 3y^{3}*2x - 2y^{4}*2x + y + 0\\=&16x^{3} + 6y^{3}x - 4y^{4}x + y\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 16x^{3} + 6y^{3}x - 4y^{4}x + y\right)}{dx}\\=&16*3x^{2} + 6y^{3} - 4y^{4} + 0\\=&48x^{2} + 6y^{3} - 4y^{4}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 48x^{2} + 6y^{3} -
    Solution:
    71507458524664155792360677749540281852974801616896*71507458524664155792360677749540281852974801616896 = 5113316624656564444127852143364088969034666480773582571377237792205725104444976568935087055952674816
    Column vertical calculation:
                                                       71507458524664155792360677749540281852974801616896
                                                      71507458524664155792360677749540281852974801616896

                                                      429044751147984934754164066497241691117848809701376
                                                     643567126721977402131246099745862536676773214552064 
                                                    572059668197313246338885421996322254823798412935168  
                                                   429044751147984934754164066497241691117848809701376   
                                                   71507458524664155792360677749540281852974801616896    
                                                 429044751147984934754164066497241691117848809701376     
                                                 71507458524664155792360677749540281852974801616896      
                                                00000000000000000000000000000000000000000000000000       
                                              572059668197313246338885421996322254823798412935168        
                                             286029834098656623169442710998161127411899206467584         
                                            500552209672649090546524744246781972970823611318272          
                                           643567126721977402131246099745862536676773214552064           
                                          143014917049328311584721355499080563705949603233792            
                                         357537292623320778961803388747701409264874008084480             
                                        572059668197313246338885421996322254823798412935168              
                                        71507458524664155792360677749540281852974801616896               
                                      572059668197313246338885421996322254823798412935168                
                                     143014917049328311584721355499080563705949603233792                 
                                     00000000000000000000000000000000000000000000000000                  
                                   286029834098656623169442710998161127411899206467584                   
                                  357537292623320778961803388747701409264874008084480                    
                                 643567126721977402131246099745862536676773214552064                     
                                286029834098656623169442710998161127411899206467584                      
                               500552209672649090546524744246781972970823611318272                       
                              500552209672649090546524744246781972970823611318272                        
                             500552209672649090546524744246781972970823611318272                         
                            429044751147984934754164066497241691117848809701376                          
                            00000000000000000000000000000000000000000000000000                           
                          429044751147984934754164066497241691117848809701376                            
                         214522375573992467377082033248620845558924404850688                             
                        143014917049328311584721355499080563705949603233792                              
                       643567126721977402131246099745862536676773214552064                               
                      500552209672649090546524744246781972970823611318272                                
                     357537292623320778961803388747701409264874008084480                                 
                    357537292623320778961803388747701409264874008084480                                  
                    71507458524664155792360677749540281852974801616896                                   
                  286029834098656623169442710998161127411899206467584                                    
                 429044751147984934754164066497241691117848809701376                                     
                429044751147984934754164066497241691117848809701376                                      
               286029834098656623169442710998161127411899206467584                                       
              143014917049328311584721355499080563705949603233792                                        
             357537292623320778961803388747701409264874008084480                                         
            572059668197313246338885421996322254823798412935168                                          
           357537292623320778961803388747701409264874008084480                                           
          286029834098656623169442710998161127411899206467584                                            
         500552209672649090546524744246781972970823611318272                                             
         00000000000000000000000000000000000000000000000000                                              
       357537292623320778961803388747701409264874008084480                                               
       71507458524664155792360677749540281852974801616896                                                
     500552209672649090546524744246781972970823611318272                                                 

     5113316624656564444127852143364088969034666480773582571377237792205725104444976568935087055952674816



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。