Mathematics
         
语言:中文    Language:English
Mathematical calculation:
    Enter the mathematical formula directly and click the "Next" button to get the calculation answer.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Mathematical Computation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 integer calculations

[1/1 Integer column vertical calculation]
    Question type: Integer multiplication
    Original question: 32158997899177689906113072821604868333079946592256*32158997899177689906113072821604868333079946592256split}【1/1】求函数{(1 + \frac{3}{x})}^{\frac{1}{3}} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{3}{x} + 1)^{\frac{1}{3}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{3}{x} + 1)^{\frac{1}{3}}\right)}{dx}\\=&(\frac{\frac{1}{3}(\frac{3*-1}{x^{2}} + 0)}{(\frac{3}{x} + 1)^{\frac{2}{3}}})\\=&\frac{-1}{(\frac{3}{x} + 1)^{\frac{2}{3}}x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-1}{(\frac{3}{x} + 1)^{\frac{2}{3}}x^{2}}\right)}{dx}\\=&\frac{-(\frac{\frac{-2}{3}(\frac{3*-1}{x^{2}} + 0)}{(\frac{3}{x} + 1)^{\frac{5}{3}}})}{x^{2}} - \frac{-2}{(\frac{3}{x} + 1)^{\frac{2}{3}}x^{3}}\\=&\frac{-2}{(\frac{3}{x} + 1)^{\frac{5}{3}}x^{4}} + \frac{2}{(\frac{3}{x} + 1)^{\frac{2}{3}}x^{3}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-2}{(\frac{3}{x} + 1)^{\frac{5}{3}}x^{4}} + \frac{2}{(\frac{3‑
    Solution:
    32158997899177689906113072821604868333079946592256*32158997899177689906113072821604868333079946592256 = 1034201145879315072835759205955584397697476302428266218520089677995666358561332226316109347119169536
    Column vertical calculation:
                                                       32158997899177689906113072821604868333079946592256
                                                      32158997899177689906113072821604868333079946592256

                                                      192953987395066139436678436929629209998479679553536
                                                     160794989495888449530565364108024341665399732961280 
                                                     64317995798355379812226145643209736666159893184512  
                                                    64317995798355379812226145643209736666159893184512   
                                                  289430981092599209155017655394443814997719519330304    
                                                 160794989495888449530565364108024341665399732961280     
                                                192953987395066139436678436929629209998479679553536      
                                               128635991596710759624452291286419473332319786369024       
                                              289430981092599209155017655394443814997719519330304        
                                             289430981092599209155017655394443814997719519330304         
                                            225112985294243829342791509751234078331559626145792          
                                            00000000000000000000000000000000000000000000000000           
                                           96476993697533069718339218464814604999239839776768            
                                          96476993697533069718339218464814604999239839776768             
                                         96476993697533069718339218464814604999239839776768              
                                       257271983193421519248904582572838946664639572738048               
                                      192953987395066139436678436929629209998479679553536                
                                     257271983193421519248904582572838946664639572738048                 
                                    128635991596710759624452291286419473332319786369024                  
                                    00000000000000000000000000000000000000000000000000                   
                                  192953987395066139436678436929629209998479679553536                    
                                  32158997899177689906113072821604868333079946592256                     
                                 64317995798355379812226145643209736666159893184512                      
                               257271983193421519248904582572838946664639572738048                       
                               64317995798355379812226145643209736666159893184512                        
                             225112985294243829342791509751234078331559626145792                         
                             00000000000000000000000000000000000000000000000000                          
                            96476993697533069718339218464814604999239839776768                           
                           32158997899177689906113072821604868333079946592256                            
                          32158997899177689906113072821604868333079946592256                             
                        192953987395066139436678436929629209998479679553536                              
                        00000000000000000000000000000000000000000000000000                               
                      289430981092599209155017655394443814997719519330304                                
                     289430981092599209155017655394443814997719519330304                                 
                    257271983193421519248904582572838946664639572738048                                  
                   192953987395066139436678436929629209998479679553536                                   
                  225112985294243829342791509751234078331559626145792                                    
                 225112985294243829342791509751234078331559626145792                                     
                 32158997899177689906113072821604868333079946592256                                      
               289430981092599209155017655394443814997719519330304                                       
              289430981092599209155017655394443814997719519330304                                        
             257271983193421519248904582572838946664639572738048                                         
            225112985294243829342791509751234078331559626145792                                          
           289430981092599209155017655394443814997719519330304                                           
          289430981092599209155017655394443814997719519330304                                            
         257271983193421519248904582572838946664639572738048                                             
        160794989495888449530565364108024341665399732961280                                              
        32158997899177689906113072821604868333079946592256                                               
       64317995798355379812226145643209736666159893184512                                                
      96476993697533069718339218464814604999239839776768                                                 

     1034201145879315072835759205955584397697476302428266218520089677995666358561332226316109347119169536



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。