Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Fold
                                Inequality
                                Mathematics
                                Fractions
                                Statistics
                                Prime factor
                                Fraction and Decimal Interactions
                                Lenders ToolBox
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Mathematical calculation:
    Enter the mathematical formula directly and click the "Next" button to get the calculation answer.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Mathematical Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 integer calculations

[1/1 Integer column vertical calculation]
    Question type: Integer multiplication
    Original question: 94514641722151645882776677613775817163182058766336*94514641722151645882776677613775817163182058766336p;Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln({(1 + {e}^{2}x)}^{\frac{1}{2}} + {e}^{x})}{2} + (\frac{1}{2})({e}^{x}){(1 + {e}^{2})}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}ln((xe^{2} + 1)^{\frac{1}{2}} + {e}^{x}) + \frac{1}{2}(e^{2} + 1)^{\frac{1}{2}}{e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}ln((xe^{2} + 1)^{\frac{1}{2}} + {e}^{x}) + \frac{1}{2}(e^{2} + 1)^{\frac{1}{2}}{e}^{x}\right)}{dx}\\=&\frac{\frac{1}{2}((\frac{\frac{1}{2}(e^{2} + x*2e*0 + 0)}{(xe^{2} + 1)^{\frac{1}{2}}}) + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{((xe^{2} + 1)^{\frac{1}{2}} + {e}^{x})} + \frac{1}{2}(
    Solution:
    94514641722151645882776677613775817163182058766336*94514641722151645882776677613775817163182058766336 = 8933017499866688637842531186880801619460005993920896169212028947301518995672165296243935786246864896
    Column vertical calculation:
                                                       94514641722151645882776677613775817163182058766336
                                                      94514641722151645882776677613775817163182058766336

                                                      567087850332909875296660065682654902979092352598016
                                                     283543925166454937648330032841327451489546176299008 
                                                    283543925166454937648330032841327451489546176299008  
                                                   567087850332909875296660065682654902979092352598016   
                                                  567087850332909875296660065682654902979092352598016    
                                                 661602492055061521179436743296430720142274411364352     
                                                756117133777213167062213420910206537305456470130688      
                                               472573208610758229413883388068879085815910293831680       
                                               00000000000000000000000000000000000000000000000000        
                                             189029283444303291765553355227551634326364117532672         
                                            756117133777213167062213420910206537305456470130688          
                                            94514641722151645882776677613775817163182058766336           
                                          283543925166454937648330032841327451489546176299008            
                                         567087850332909875296660065682654902979092352598016             
                                         94514641722151645882776677613775817163182058766336              
                                       661602492055061521179436743296430720142274411364352               
                                       94514641722151645882776677613775817163182058766336                
                                     756117133777213167062213420910206537305456470130688                 
                                    472573208610758229413883388068879085815910293831680                  
                                   661602492055061521179436743296430720142274411364352                   
                                  661602492055061521179436743296430720142274411364352                    
                                 283543925166454937648330032841327451489546176299008                     
                                 94514641722151645882776677613775817163182058766336                      
                               567087850332909875296660065682654902979092352598016                       
                              661602492055061521179436743296430720142274411364352                        
                             661602492055061521179436743296430720142274411364352                         
                            567087850332909875296660065682654902979092352598016                          
                           567087850332909875296660065682654902979092352598016                           
                          661602492055061521179436743296430720142274411364352                            
                         661602492055061521179436743296430720142274411364352                             
                        189029283444303291765553355227551634326364117532672                              
                       756117133777213167062213420910206537305456470130688                               
                      756117133777213167062213420910206537305456470130688                                
                     472573208610758229413883388068879085815910293831680                                 
                    378058566888606583531106710455103268652728235065344                                  
                   567087850332909875296660065682654902979092352598016                                   
                   94514641722151645882776677613775817163182058766336                                    
                 472573208610758229413883388068879085815910293831680                                     
                 94514641722151645882776677613775817163182058766336                                      
               189029283444303291765553355227551634326364117532672                                       
              189029283444303291765553355227551634326364117532672                                        
             661602492055061521179436743296430720142274411364352                                         
             94514641722151645882776677613775817163182058766336                                          
           378058566888606583531106710455103268652728235065344                                           
          567087850332909875296660065682654902979092352598016                                            
         378058566888606583531106710455103268652728235065344                                             
         94514641722151645882776677613775817163182058766336                                              
       472573208610758229413883388068879085815910293831680                                               
      378058566888606583531106710455103268652728235065344                                                
     850631775499364812944990098523982354468638528897024                                                 

     8933017499866688637842531186880801619460005993920896169212028947301518995672165296243935786246864896



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。