Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Fold
                                Inequality
                                Mathematics
                                Fractions
                                Statistics
                                Prime factor
                                Fraction and Decimal Interactions
                                Lenders ToolBox
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Mathematical calculation:
    Enter the mathematical formula directly and click the "Next" button to get the calculation answer.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Mathematical Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 integer calculations

[1/1 Integer column vertical calculation]
    Question type: Integer multiplication
    Original question: 113*8849557522123893805309734513274660498185840707964601769911504424778761061946902654867256637168141p;Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(1 + {e}^{(2x)}) + \frac{ln(1 + {e}^{(-2x)})}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln({e}^{(2x)} + 1) + \frac{1}{2}ln({e}^{(-2x)} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln({e}^{(2x)} + 1) + \frac{1}{2}ln({e}^{(-2x)} + 1)\right)}{dx}\\=&\frac{(({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) + 0)}{({e}^{(2x)} + 1)} + \frac{\frac{1}{2}(({e}^{(-2x)}((-2)ln(e) + \frac{(-2x)(0)}{(e)})) + 0)}{({e}^{(-2x)} + 1)}\\=&\frac{2{e}^{(2x)}}{({e}^{(2x)} + 1)} - \frac{{e}^{(-2x)}}{({e}^{(-2x)} + 1)}\\ \end{split}\end{equation} \]




Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。