Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Fold
                                Inequality
                                Mathematics
                                Fractions
                                Statistics
                                Prime factor
                                Fraction and Decimal Interactions
                                Lenders ToolBox
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Mathematical calculation:
    Enter the mathematical formula directly and click the "Next" button to get the calculation answer.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Mathematical Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 arithmetic calculations

[1/1 Formula]
    Work: Calculate the value of equation 6.524×(700.085)^4×10^(-12)+-6.036×(700.085)^3×10^(-8)+2.3482926×(700.085)^2×(10)^(-4)+0.8258×700.085+41.68 .
    Question type: Mathematical calculation
    Solution:
          6.524×(700.085)^4×10^(-12)+-6.036×(700.085)^3×10^(-8)+2.3482926×(700.085)^2×(10)^(-4)+0.8258×700.085+41.68
        =6.524×700.085^4×10^(-12)+-6.036×(700.085)^3×10^(-8)+2.3482926×(700.085)^2×(10)^(-4)+0.8258×700.085+41.68
        =6.524×700.085^4×10^(-12)+-6.036×(700.085)^3×10^(-8)+2.3482926×(700.085)^2×(10)^(-4)+0.8258×700.085+41.68
        =6.524×700.085^4×10^-12+-6.036×700.085^3×10^(-8)+2.3482926×(700.085)^2×(10)^(-4)+0.8258×700.085+41.68
        =6.524×700.085^4×10^-12+-6.036×700.085^3×10^(-8)+2.3482926×(700.085)^2×(10)^(-4)+0.8258×700.085+41.68
        =6.524×700.085^4×10^-12+-6.036×700.085^3×10^-8+2.3482926×700.085^2×(10)^(-4)+0.8258×700.085+41.68
        =6.524×700.085^4×10^-12+-6.036×700.085^3×10^-8+2.3482926×700.085^2×10^(-4)+0.8258×700.085+41.68
        =6.524×700.085^4×10^-12+-6.036×700.085^3×10^-8+2.3482926×700.085^2×10^(-4)+0.8258×700.085+41.68
        =6.524×240216641243.21966552734375×10^(-12)+(-6.036)×700.085^3×10^(-8)+2.3482926×700.085^2×10^(-4)+0.8258×700.085+41.68
        =6.524×240216641243.21966552734375×0.000000000001+(-6.036)×700.085^3×10^(-8)+2.3482926×700.085^2×10^(-4)+0.8258×700.085+41.68
        =6.524×240216641243.21966552734375×0.000000000001+(-6.036)×343124965.17311418056488×10^(-8)+2.3482926×700.085^2×10^(-4)+0.8258×700.085+41.68
        =6.524×240216641243.21966552734375×0.000000000001+(-6.036)×343124965.17311418056488×0.00000001+2.3482926×700.085^2×10^(-4)+0.8258×700.085+41.68
        =6.524×240216641243.21966552734375×0.000000000001+(-6.036)×343124965.17311418056488×0.00000001+2.3482926×490119.007225000066683×10^(-4)+0.8258×700.085+41.68
        =6.524×240216641243.21966552734375×0.000000000001+(-6.036)×343124965.17311418056488×0.00000001+2.3482926×490119.007225000066683×0.0001+0.8258×700.085+41.68
        =1567173367470.765137×0.000000000001+(-6.036)×343124965.17311418056488×0.00000001+2.3482926×490119.007225000066683×0.0001+0.8258×700.085+41.68
        =1.567173+(-6.036)×343124965.17311418056488×0.00000001+2.3482926×490119.007225000066683×0.0001+0.8258×700.085+41.68
        =1.567173+(-2071102289.784917)×0.00000001+2.3482926×490119.007225000066683×0.0001+0.8258×700.085+41.68
        =1.567173+(-20.711023)+2.3482926×490119.007225000066683×0.0001+0.8258×700.085+41.68
        =1.567173+-20.711023+1150942.837786×0.0001+0.8258×700.085+41.68
        =1.567173+-20.711023+115.094284+0.8258×700.085+41.68
        =1.567173+-20.711023+115.094284+578.130193+41.68
        =-19.14385+115.094284+578.130193+41.68
        =95.950434+578.130193+41.68
        =674.080627+41.68
        =715.760627

    Answer:6.524×(700.085)^4×10^(-12)+-6.036×(700.085)^3×10^(-8)+2.3482926×(700.085)^2×(10)^(-4)+0.8258×700.085+41.68=715.760627


Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。