Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Fold
                                Inequality
                                Mathematics
                                Fractions
                                Statistics
                                Prime factor
                                Fraction and Decimal Interactions
                                Lenders ToolBox
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Mathematical calculation:
    Enter the mathematical formula directly and click the "Next" button to get the calculation answer.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Mathematical Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 arithmetic calculations

[1/1 Formula]
    Work: Calculate the value of equation 22.4*(1.0615)^6+1.2*(1.0615)^5+1.2*(1.0615)^4+1.2*(1.0615)^3+1.2*(1.0615)^2+1.2*(1.0615)^1+1.2*(1.0615)^0 .
    Question type: Mathematical calculation
    Solution:
          22.4*(1.0615)^6+1.2*(1.0615)^5+1.2*(1.0615)^4+1.2*(1.0615)^3+1.2*(1.0615)^2+1.2*(1.0615)^1+1.2*(1.0615)^0
        =22.4*1.0615^6+1.2*(1.0615)^5+1.2*(1.0615)^4+1.2*(1.0615)^3+1.2*(1.0615)^2+1.2*(1.0615)^1+1.2*(1.0615)^0
        =22.4*1.0615^6+1.2*1.0615^5+1.2*(1.0615)^4+1.2*(1.0615)^3+1.2*(1.0615)^2+1.2*(1.0615)^1+1.2*(1.0615)^0
        =22.4*1.0615^6+1.2*1.0615^5+1.2*1.0615^4+1.2*(1.0615)^3+1.2*(1.0615)^2+1.2*(1.0615)^1+1.2*(1.0615)^0
        =22.4*1.0615^6+1.2*1.0615^5+1.2*1.0615^4+1.2*1.0615^3+1.2*(1.0615)^2+1.2*(1.0615)^1+1.2*(1.0615)^0
        =22.4*1.0615^6+1.2*1.0615^5+1.2*1.0615^4+1.2*1.0615^3+1.2*1.0615^2+1.2*(1.0615)^1+1.2*(1.0615)^0
        =22.4*1.0615^6+1.2*1.0615^5+1.2*1.0615^4+1.2*1.0615^3+1.2*1.0615^2+1.2*1.0615^1+1.2*(1.0615)^0
        =22.4*1.0615^6+1.2*1.0615^5+1.2*1.0615^4+1.2*1.0615^3+1.2*1.0615^2+1.2*1.0615^1+1.2*1.0615^0
        =22.4*1.430605831530753+1.2*1.0615^5+1.2*1.0615^4+1.2*1.0615^3+1.2*1.0615^2+1.2*1.0615^1+1.2*1.0615^0
        =22.4*1.430605831530753+1.2*1.34772099060834+1.2*1.0615^4+1.2*1.0615^3+1.2*1.0615^2+1.2*1.0615^1+1.2*1.0615^0
        =22.4*1.430605831530753+1.2*1.34772099060834+1.2*1.269638238915063+1.2*1.0615^3+1.2*1.0615^2+1.2*1.0615^1+1.2*1.0615^0
        =22.4*1.430605831530753+1.2*1.34772099060834+1.2*1.269638238915063+1.2*1.196079358375+1.2*1.0615^2+1.2*1.0615^1+1.2*1.0615^0
        =22.4*1.430605831530753+1.2*1.34772099060834+1.2*1.269638238915063+1.2*1.196079358375+1.2*1.12678225+1.2*1.0615^1+1.2*1.0615^0
        =22.4*1.430605831530753+1.2*1.34772099060834+1.2*1.269638238915063+1.2*1.196079358375+1.2*1.12678225+1.2*1.0615+1.2*1.0615^0
        =22.4*1.430605831530753+1.2*1.34772099060834+1.2*1.269638238915063+1.2*1.196079358375+1.2*1.12678225+1.2*1.0615+1.2*1
        =32.045571+1.2*1.34772099060834+1.2*1.269638238915063+1.2*1.196079358375+1.2*1.12678225+1.2*1.0615+1.2*1
        =32.045571+1.617265+1.2*1.269638238915063+1.2*1.196079358375+1.2*1.12678225+1.2*1.0615+1.2*1
        =32.045571+1.617265+1.523566+1.2*1.196079358375+1.2*1.12678225+1.2*1.0615+1.2*1
        =32.045571+1.617265+1.523566+1.435295+1.2*1.12678225+1.2*1.0615+1.2*1
        =32.045571+1.617265+1.523566+1.435295+1.352139+1.2*1.0615+1.2*1
        =32.045571+1.617265+1.523566+1.435295+1.352139+1.2738+1.2*1
        =32.045571+1.617265+1.523566+1.435295+1.352139+1.2738+1.2
        =33.662836+1.523566+1.435295+1.352139+1.2738+1.2
        =35.186402+1.435295+1.352139+1.2738+1.2
        =36.621697+1.352139+1.2738+1.2
        =37.973836+1.2738+1.2
        =39.247636+1.2
        =40.447636

    Answer:22.4*(1.0615)^6+1.2*(1.0615)^5+1.2*(1.0615)^4+1.2*(1.0615)^3+1.2*(1.0615)^2+1.2*(1.0615)^1+1.2*(1.0615)^0=40.447636


Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。