Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Fold
                                Inequality
                                Mathematics
                                Fractions
                                Statistics
                                Prime factor
                                Fraction and Decimal Interactions
                                Lenders ToolBox
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Mathematical calculation:
    Enter the mathematical formula directly and click the "Next" button to get the calculation answer.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Mathematical Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 arithmetic calculations

[1/1 Formula]
    Work: Calculate the value of equation 1/12×200×1300^3+200×1300×(1300/2-460)^2+1/12×(1600-200)×120^3+(1600-200)×120×(460-120/2)^2+(6.349-1)×4562×(1192-460)^2 .
    Question type: Mathematical calculation
    Solution:
          1/12×200×1300^3+200×1300×(1300/2-460)^2+1/12×(1600-200)×120^3+(1600-200)×120×(460-120/2)^2+(6.349-1)×4562×(1192-460)^2
        =1/12×200×1300^3+200×1300×190^2+1/12×(1600-200)×120^3+(1600-200)×120×(460-120/2)^2+(6.349-1)×4562×(1192-460)^2
        =1/12×200×1300^3+200×1300×190^2+1/12×1400×120^3+(1600-200)×120×(460-120/2)^2+(6.349-1)×4562×(1192-460)^2
        =1/12×200×1300^3+200×1300×190^2+1/12×1400×120^3+1400×120×(460-120/2)^2+(6.349-1)×4562×(1192-460)^2
        =1/12×200×1300^3+200×1300×190^2+1/12×1400×120^3+1400×120×400^2+(6.349-1)×4562×(1192-460)^2
        =1/12×200×1300^3+200×1300×190^2+1/12×1400×120^3+1400×120×400^2+5.349×4562×(1192-460)^2
        =1/12×200×1300^3+200×1300×190^2+1/12×1400×120^3+1400×120×400^2+5.349×4562×732^2
        =1/12×200×2197000000+200×1300×190^2+1/12×1400×120^3+1400×120×400^2+5.349×4562×732^2
        =1/12×200×2197000000+200×1300×36100+1/12×1400×120^3+1400×120×400^2+5.349×4562×732^2
        =1/12×200×2197000000+200×1300×36100+1/12×1400×1728000+1400×120×400^2+5.349×4562×732^2
        =1/12×200×2197000000+200×1300×36100+1/12×1400×1728000+1400×120×160000+5.349×4562×732^2
        =1/12×200×2197000000+200×1300×36100+1/12×1400×1728000+1400×120×160000+5.349×4562×535824
        =0.083333×200×2197000000+200×1300×36100+1/12×1400×1728000+1400×120×160000+5.349×4562×535824
        =16.6666×2197000000+200×1300×36100+1/12×1400×1728000+1400×120×160000+5.349×4562×535824
        =36616520200+200×1300×36100+1/12×1400×1728000+1400×120×160000+5.349×4562×535824
        =36616520200+260000×36100+1/12×1400×1728000+1400×120×160000+5.349×4562×535824
        =36616520200+9386000000+1/12×1400×1728000+1400×120×160000+5.349×4562×535824
        =36616520200+9386000000+0.083333×1400×1728000+1400×120×160000+5.349×4562×535824
        =36616520200+9386000000+116.6662×1728000+1400×120×160000+5.349×4562×535824
        =36616520200+9386000000+201599193.6+1400×120×160000+5.349×4562×535824
        =36616520200+9386000000+201599193.6+168000×160000+5.349×4562×535824
        =36616520200+9386000000+201599193.6+26880000000+5.349×4562×535824
        =36616520200+9386000000+201599193.6+26880000000+24402.138×535824
        =36616520200+9386000000+201599193.6+26880000000+13075251191.712
        =46002520200+201599193.6+26880000000+13075251191.712
        =46204119393.599998+26880000000+13075251191.712
        =73084119393.600006+13075251191.712
        =86159370585.312012

    Answer:1/12×200×1300^3+200×1300×(1300/2-460)^2+1/12×(1600-200)×120^3+(1600-200)×120×(460-120/2)^2+(6.349-1)×4562×(1192-460)^2=86159370585.312012


Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。