Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Fold
                                Inequality
                                Mathematics
                                Fractions
                                Statistics
                                Prime factor
                                Fraction and Decimal Interactions
                                Lenders ToolBox
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Mathematical calculation:
    Enter the mathematical formula directly and click the "Next" button to get the calculation answer.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Mathematical Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 arithmetic calculations

[1/1 Formula]
    Work: Calculate the value of equation 1/12×200×1500^3+200×1500×(1500/2-542)^2+1/12×(1600-200)×120^3+(1600-200)×120×(542-120/2)^2+(6.667-1)×3770×(1403-542)^2 .
    Question type: Mathematical calculation
    Solution:
          1/12×200×1500^3+200×1500×(1500/2-542)^2+1/12×(1600-200)×120^3+(1600-200)×120×(542-120/2)^2+(6.667-1)×3770×(1403-542)^2
        =1/12×200×1500^3+200×1500×208^2+1/12×(1600-200)×120^3+(1600-200)×120×(542-120/2)^2+(6.667-1)×3770×(1403-542)^2
        =1/12×200×1500^3+200×1500×208^2+1/12×1400×120^3+(1600-200)×120×(542-120/2)^2+(6.667-1)×3770×(1403-542)^2
        =1/12×200×1500^3+200×1500×208^2+1/12×1400×120^3+1400×120×(542-120/2)^2+(6.667-1)×3770×(1403-542)^2
        =1/12×200×1500^3+200×1500×208^2+1/12×1400×120^3+1400×120×482^2+(6.667-1)×3770×(1403-542)^2
        =1/12×200×1500^3+200×1500×208^2+1/12×1400×120^3+1400×120×482^2+5.667×3770×(1403-542)^2
        =1/12×200×1500^3+200×1500×208^2+1/12×1400×120^3+1400×120×482^2+5.667×3770×861^2
        =1/12×200×3375000000+200×1500×208^2+1/12×1400×120^3+1400×120×482^2+5.667×3770×861^2
        =1/12×200×3375000000+200×1500×43264+1/12×1400×120^3+1400×120×482^2+5.667×3770×861^2
        =1/12×200×3375000000+200×1500×43264+1/12×1400×1728000+1400×120×482^2+5.667×3770×861^2
        =1/12×200×3375000000+200×1500×43264+1/12×1400×1728000+1400×120×232324+5.667×3770×861^2
        =1/12×200×3375000000+200×1500×43264+1/12×1400×1728000+1400×120×232324+5.667×3770×741321
        =0.083333×200×3375000000+200×1500×43264+1/12×1400×1728000+1400×120×232324+5.667×3770×741321
        =16.6666×3375000000+200×1500×43264+1/12×1400×1728000+1400×120×232324+5.667×3770×741321
        =56249775000+200×1500×43264+1/12×1400×1728000+1400×120×232324+5.667×3770×741321
        =56249775000+300000×43264+1/12×1400×1728000+1400×120×232324+5.667×3770×741321
        =56249775000+12979200000+1/12×1400×1728000+1400×120×232324+5.667×3770×741321
        =56249775000+12979200000+0.083333×1400×1728000+1400×120×232324+5.667×3770×741321
        =56249775000+12979200000+116.6662×1728000+1400×120×232324+5.667×3770×741321
        =56249775000+12979200000+201599193.6+1400×120×232324+5.667×3770×741321
        =56249775000+12979200000+201599193.6+168000×232324+5.667×3770×741321
        =56249775000+12979200000+201599193.6+39030432000+5.667×3770×741321
        =56249775000+12979200000+201599193.6+39030432000+21364.59×741321
        =56249775000+12979200000+201599193.6+39030432000+15838019223.389999
        =69228975000+201599193.6+39030432000+15838019223.389999
        =69430574193.600006+39030432000+15838019223.389999
        =108461006193.600006+15838019223.389999
        =124299025416.990005

    Answer:1/12×200×1500^3+200×1500×(1500/2-542)^2+1/12×(1600-200)×120^3+(1600-200)×120×(542-120/2)^2+(6.667-1)×3770×(1403-542)^2=124299025416.990005


Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。