Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Fold
                                Inequality
                                Mathematics
                                Fractions
                                Statistics
                                Prime factor
                                Fraction and Decimal Interactions
                                Lenders ToolBox
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Mathematical calculation:
    Enter the mathematical formula directly and click the "Next" button to get the calculation answer.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Mathematical Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 arithmetic calculations

[1/1 Formula]
    Work: Calculate the value of equation 3*(1+1%)^11/(1+5%)^12+3*(1+1%)^12/(1+5%)^13+3*(1+1%)^13/(1+5%)^14+3*(1+1%)^14/(1+5%)^15 .
    Question type: Mathematical calculation
    Solution:
          3*(1+1%)^11/(1+5%)^12+3*(1+1%)^12/(1+5%)^13+3*(1+1%)^13/(1+5%)^14+3*(1+1%)^14/(1+5%)^15
        =3*1.01^11/(1+5%)^12+3*(1+1%)^12/(1+5%)^13+3*(1+1%)^13/(1+5%)^14+3*(1+1%)^14/(1+5%)^15
        =3*1.01^11/1.05^12+3*(1+1%)^12/(1+5%)^13+3*(1+1%)^13/(1+5%)^14+3*(1+1%)^14/(1+5%)^15
        =3*1.01^11/1.05^12+3*1.01^12/(1+5%)^13+3*(1+1%)^13/(1+5%)^14+3*(1+1%)^14/(1+5%)^15
        =3*1.01^11/1.05^12+3*1.01^12/1.05^13+3*(1+1%)^13/(1+5%)^14+3*(1+1%)^14/(1+5%)^15
        =3*1.01^11/1.05^12+3*1.01^12/1.05^13+3*1.01^13/(1+5%)^14+3*(1+1%)^14/(1+5%)^15
        =3*1.01^11/1.05^12+3*1.01^12/1.05^13+3*1.01^13/1.05^14+3*(1+1%)^14/(1+5%)^15
        =3*1.01^11/1.05^12+3*1.01^12/1.05^13+3*1.01^13/1.05^14+3*1.01^14/(1+5%)^15
        =3*1.01^11/1.05^12+3*1.01^12/1.05^13+3*1.01^13/1.05^14+3*1.01^14/1.05^15
        =3*1.115668346665317/1.05^12+3*1.01^12/1.05^13+3*1.01^13/1.05^14+3*1.01^14/1.05^15
        =3*1.115668346665317/1.79585632602213+3*1.01^12/1.05^13+3*1.01^13/1.05^14+3*1.01^14/1.05^15
        =3*1.115668346665317/1.79585632602213+3*1.12682503013197/1.05^13+3*1.01^13/1.05^14+3*1.01^14/1.05^15
        =3*1.115668346665317/1.79585632602213+3*1.12682503013197/1.885649142323237+3*1.01^13/1.05^14+3*1.01^14/1.05^15
        =3*1.115668346665317/1.79585632602213+3*1.12682503013197/1.885649142323237+3*1.13809328043329/1.05^14+3*1.01^14/1.05^15
        =3*1.115668346665317/1.79585632602213+3*1.12682503013197/1.885649142323237+3*1.13809328043329/1.979931599439399+3*1.01^14/1.05^15
        =3*1.115668346665317/1.79585632602213+3*1.12682503013197/1.885649142323237+3*1.13809328043329/1.979931599439399+3*1.149474213237623/1.05^15
        =3*1.115668346665317/1.79585632602213+3*1.12682503013197/1.885649142323237+3*1.13809328043329/1.979931599439399+3*1.149474213237623/2.078928179411369
        =3.347005/1.79585632602213+3*1.12682503013197/1.885649142323237+3*1.13809328043329/1.979931599439399+3*1.149474213237623/2.078928179411369
        =1.863738+3*1.12682503013197/1.885649142323237+3*1.13809328043329/1.979931599439399+3*1.149474213237623/2.078928179411369
        =1.863738+3.380475/1.885649142323237+3*1.13809328043329/1.979931599439399+3*1.149474213237623/2.078928179411369
        =1.863738+1.792738+3*1.13809328043329/1.979931599439399+3*1.149474213237623/2.078928179411369
        =1.863738+1.792738+3.41428/1.979931599439399+3*1.149474213237623/2.078928179411369
        =1.863738+1.792738+1.724443+3*1.149474213237623/2.078928179411369
        =1.863738+1.792738+1.724443+3.448423/2.078928179411369
        =1.863738+1.792738+1.724443+1.65875
        =3.656476+1.724443+1.65875
        =5.380919+1.65875
        =7.039669

    Answer:3*(1+1%)^11/(1+5%)^12+3*(1+1%)^12/(1+5%)^13+3*(1+1%)^13/(1+5%)^14+3*(1+1%)^14/(1+5%)^15=7.039669


Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。