Mathematics
         
语言:中文    Language:English
Fractions calculation:
    Enter the fractions calculation formula directly and click the "Next" button to get the calculation answer.
    It does not support mathematical functions (including trigonometric functions) and can only calculate the addition, subtraction, multiplication and division of two fractions. The fraction line is indicated by "/".
    Current location:Mathematical operation > History of fraction calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 2.2099/(5.9375-1.1124)+0.7304/(3.1042-1.1124)+0.4789/(1.2292-1.1124)+0.0029/(1-1.1124) = x+1 .
    Question type: Equation
    Solution:Original question:
     
22099
10000
÷ (
95
16
2781
2500
) +
913
1250
÷ (
15521
5000
2781
2500
) +
4789
10000
÷ (
3073
2500
2781
2500
) +
29
10000
÷ (1
2781
2500
) = x + 1
     Multiply both sides of the equation by:(
95
16
2781
2500
)
     
22099
10000
+
913
1250
÷ (
15521
5000
2781
2500
) × (
95
16
2781
2500
) +
4789
10000
÷ (
3073
2500
2781
2500
) × (
95
16
2781
2500
) +
29
10000
÷ (1
2781
2500
) × (
95
16
2781
2500
) = x (
95
16
2781
2500
) + 1(
95
16
2781
2500
)
    Remove a bracket on the left of the equation::
     
22099
10000
+
913
1250
÷ (
15521
5000
2781
2500
) ×
95
16
913
1250
÷ (
15521
5000
2781
2500
) ×
2781
2500
+
4789
10000
÷ (
3073
2500
2781
2500
) × (
95
16
2781
2500
) +
29
10000
÷ (1
2781
2500
) = x (
95
16
2781
2500
) + 1(
95
16
2781
2500
)
    Remove a bracket on the right of the equation::
     
22099
10000
+
913
1250
÷ (
15521
5000
2781
2500
) ×
95
16
913
1250
÷ (
15521
5000
2781
2500
) ×
2781
2500
+
4789
10000
÷ (
3073
2500
2781
2500
) × (
95
16
2781
2500
) +
29
10000
÷ (1
2781
2500
) = x ×
95
16
x ×
2781
2500
+ 1(
95
16
2781
2500
)
    The equation is reduced to :
     
22099
10000
+
17347
4000
÷ (
15521
5000
2781
2500
)
2539053
3125000
÷ (
15521
5000
2781
2500
) +
4789
10000
÷ (
3073
2500
2781
2500
) × (
95
16
2781
2500
) +
29
10000
÷ (1
2781
2500
) × (
95
16
2781
2500
) = x ×
95
16
x ×
2781
2500
+ 1(
95
16
2781
2500
)
    The equation is reduced to :
     
22099
10000
+
17347
4000
÷ (
15521
5000
2781
2500
)
2539053
3125000
÷ (
15521
5000
2781
2500
) +
4789
10000
÷ (
3073
2500
2781
2500
) × (
95
16
2781
2500
) +
29
10000
÷ (1
2781
2500
) × (
95
16
2781
2500
) =
48251
10000
x + 1(
95
16
2781
2500
)
     Multiply both sides of the equation by:(
15521
5000
2781
2500
)
     
22099
10000
(
15521
5000
2781
2500
) +
17347
4000
2539053
3125000
÷ (
15521
5000
2781
2500
) × (
15521
5000
2781
2500
) +
4789
10000
÷ (
3073
2500
2781
2500
) × (
95
16
2781
2500
)(
15521
5000
2781
2500
) +
29
10000
÷ (1
2781
2500
) =
48251
10000
x (
15521
5000
2781
2500
) + 1(
95
16
2781
2500
)(
15521
5000
2781
2500
)
    Remove a bracket on the left of the equation:
     
22099
10000
×
15521
5000
22099
10000
×
2781
2500
+
17347
4000
2539053
3125000
÷ (
15521
5000
2781
2500
) × (
15521
5000
2781
2500
) +
4789
10000
÷ (
3073
2500
2781
2500
) × (
95
16
2781
2500
)(
15521
5000
2781
2500
) =
48251
10000
x (
15521
5000
2781
2500
) + 1(
95
16
2781
2500
)(
15521
5000
2781
2500
)
    Remove a bracket on the right of the equation::
     
22099
10000
×
15521
5000
22099
10000
×
2781
2500
+
17347
4000
2539053
3125000
÷ (
15521
5000
2781
2500
) × (
15521
5000
2781
2500
) +
4789
10000
÷ (
3073
2500
2781
2500
) × (
95
16
2781
2500
)(
15521
5000
2781
2500
) =
48251
10000
x ×
15521
5000
48251
10000
x ×
2781
2500
+ 1(
95
16
2781
2500
)(
15521
5000
2781
2500
)
    The equation is reduced to :
     
342998579
50000000
61457319
25000000
+
17347
4000
2539053
3125000
÷ (
15521
5000
2781
2500
) × (
15521
5000
2781
2500
) +
4789
10000
÷ (
3073
2500
2781
2500
) × (
95
16
2781
2500
)(
15521
5000
2781
2500
) +
29
10000
÷ (1
2781
2500
) =
748903771
50000000
x
134186031
25000000
x + 1(
95
16
2781
2500
)(
15521
5000
2781
2500
)

    
        x≈3.899075 , keep 6 decimal places
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。