There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x - 9.951)}^{2} + {(x - 9.834)}^{2} + {(x - 9.938)}^{2} + {(x - 9.773)}^{2} + {(x - 9.409)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2} - 9.951x - 9.951x + x^{2} - 9.834x - 9.834x + x^{2} - 9.938x - 9.938x + x^{2} - 9.773x - 9.773x + x^{2} - 9.409x - 9.409x + 478.534611\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2} - 9.951x - 9.951x + x^{2} - 9.834x - 9.834x + x^{2} - 9.938x - 9.938x + x^{2} - 9.773x - 9.773x + x^{2} - 9.409x - 9.409x + 478.534611\right)}{dx}\\=&2x - 9.951 - 9.951 + 2x - 9.834 - 9.834 + 2x - 9.938 - 9.938 + 2x - 9.773 - 9.773 + 2x - 9.409 - 9.409 + 0\\=&2x + 2x + 2x + 2x + 2x - 97.81\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!