There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(sin({e}^{x})cos(x) - cos({e}^{x})sin(x))}^{2} + {(sin({e}^{x})sin(x) + cos({e}^{x})cos(x))}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin^{2}({e}^{x})cos^{2}(x) + sin^{2}(x)cos^{2}({e}^{x}) + sin^{2}(x)sin^{2}({e}^{x}) + cos^{2}(x)cos^{2}({e}^{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin^{2}({e}^{x})cos^{2}(x) + sin^{2}(x)cos^{2}({e}^{x}) + sin^{2}(x)sin^{2}({e}^{x}) + cos^{2}(x)cos^{2}({e}^{x})\right)}{dx}\\=&2sin({e}^{x})cos({e}^{x})({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos^{2}(x) + sin^{2}({e}^{x})*-2cos(x)sin(x) + 2sin(x)cos(x)cos^{2}({e}^{x}) + sin^{2}(x)*-2cos({e}^{x})sin({e}^{x})({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 2sin(x)cos(x)sin^{2}({e}^{x}) + sin^{2}(x)*2sin({e}^{x})cos({e}^{x})({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + -2cos(x)sin(x)cos^{2}({e}^{x}) + cos^{2}(x)*-2cos({e}^{x})sin({e}^{x})({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&2{e}^{x}sin({e}^{x})cos({e}^{x})cos^{2}(x) - 2{e}^{x}sin({e}^{x})cos^{2}(x)cos({e}^{x})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!