There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x(\frac{(x + y)}{100} + 47) + y(\frac{(x + y)}{100} + \frac{(y + z)}{100} + 6) + z(\frac{(y + z)}{100} + 47)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{100}x^{2} + \frac{1}{200}yx + 47x + \frac{1}{200}yz + \frac{1}{200}y^{2} + 6y + \frac{1}{100}z^{2} + 47z\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{100}x^{2} + \frac{1}{200}yx + 47x + \frac{1}{200}yz + \frac{1}{200}y^{2} + 6y + \frac{1}{100}z^{2} + 47z\right)}{dx}\\=&\frac{1}{100}*2x + \frac{1}{200}y + 47 + 0 + 0 + 0 + 0 + 0\\=&\frac{x}{50} + \frac{y}{200} + 47\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!