Mathematics
         
语言:中文    Language:English
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > Derivative function calculation history > Answer

    There are 6 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/6]Find\ the\ 4th\ derivative\ of\ function\ xe^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xe^{x}\right)}{dx}\\=&e^{x} + xe^{x}\\=&e^{x} + xe^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e^{x} + xe^{x}\right)}{dx}\\=&e^{x} + e^{x} + xe^{x}\\=&2e^{x} + xe^{x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2e^{x} + xe^{x}\right)}{dx}\\=&2e^{x} + e^{x} + xe^{x}\\=&3e^{x} + xe^{x}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 3e^{x} + xe^{x}\right)}{dx}\\=&3e^{x} + e^{x} + xe^{x}\\=&4e^{x} + xe^{x}\\ \end{split}\end{equation} \]

\[ \begin{equation}\begin{split}[2/6]Find\ the\ 4th\ derivative\ of\ function\ \frac{x}{e^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{e^{x}}\right)}{dx}\\=&\frac{1}{e^{x}} + \frac{x*-e^{x}}{e^{{x}*{2}}}\\=&\frac{1}{e^{x}} - \frac{x}{e^{x}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{e^{x}} - \frac{x}{e^{x}}\right)}{dx}\\=&\frac{-e^{x}}{e^{{x}*{2}}} - \frac{1}{e^{x}} - \frac{x*-e^{x}}{e^{{x}*{2}}}\\=&\frac{-2}{e^{x}} + \frac{x}{e^{x}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2}{e^{x}} + \frac{x}{e^{x}}\right)}{dx}\\=&\frac{-2*-e^{x}}{e^{{x}*{2}}} + \frac{1}{e^{x}} + \frac{x*-e^{x}}{e^{{x}*{2}}}\\=&\frac{3}{e^{x}} - \frac{x}{e^{x}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{3}{e^{x}} - \frac{x}{e^{x}}\right)}{dx}\\=&\frac{3*-e^{x}}{e^{{x}*{2}}} - \frac{1}{e^{x}} - \frac{x*-e^{x}}{e^{{x}*{2}}}\\=&\frac{-4}{e^{x}} + \frac{x}{e^{x}}\\ \end{split}\end{equation} \]

\[ \begin{equation}\begin{split}[3/6]Find\ the\ 4th\ derivative\ of\ function\ \frac{e^{x}}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{x}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{x}}{x}\right)}{dx}\\=&\frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x}\\=&\frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x}\right)}{dx}\\=&\frac{--2e^{x}}{x^{3}} - \frac{e^{x}}{x^{2}} + \frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x}\\=&\frac{2e^{x}}{x^{3}} - \frac{2e^{x}}{x^{2}} + \frac{e^{x}}{x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2e^{x}}{x^{3}} - \frac{2e^{x}}{x^{2}} + \frac{e^{x}}{x}\right)}{dx}\\=&\frac{2*-3e^{x}}{x^{4}} + \frac{2e^{x}}{x^{3}} - \frac{2*-2e^{x}}{x^{3}} - \frac{2e^{x}}{x^{2}} + \frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x}\\=&\frac{-6e^{x}}{x^{4}} + \frac{6e^{x}}{x^{3}} - \frac{3e^{x}}{x^{2}} + \frac{e^{x}}{x}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-6e^{x}}{x^{4}} + \frac{6e^{x}}{x^{3}} - \frac{3e^{x}}{x^{2}} + \frac{e^{x}}{x}\right)}{dx}\\=&\frac{-6*-4e^{x}}{x^{5}} - \frac{6e^{x}}{x^{4}} + \frac{6*-3e^{x}}{x^{4}} + \frac{6e^{x}}{x^{3}} - \frac{3*-2e^{x}}{x^{3}} - \frac{3e^{x}}{x^{2}} + \frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x}\\=&\frac{24e^{x}}{x^{5}} - \frac{24e^{x}}{x^{4}} + \frac{12e^{x}}{x^{3}} - \frac{4e^{x}}{x^{2}} + \frac{e^{x}}{x}\\ \end{split}\end{equation} \]

\[ \begin{equation}\begin{split}[4/6]Find\ the\ 4th\ derivative\ of\ function\ xln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(x)\right)}{dx}\\=&ln(x) + \frac{x}{(x)}\\=&ln(x) + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( ln(x) + 1\right)}{dx}\\=&\frac{1}{(x)} + 0\\=&\frac{1}{x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{x}\right)}{dx}\\=&\frac{-1}{x^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{x^{2}}\right)}{dx}\\=&\frac{--2}{x^{3}}\\ \end{split}\end{equation} \]

\[ \begin{equation}\begin{split}[5/6]Find\ the\ 4th\ derivative\ of\ function\ \frac{ln(x)}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{x}\right)}{dx}\\=&\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)}\\=&\frac{-ln(x)}{x^{2}} + \frac{1}{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-ln(x)}{x^{2}} + \frac{1}{x^{2}}\right)}{dx}\\=&\frac{--2ln(x)}{x^{3}} - \frac{1}{x^{2}(x)} + \frac{-2}{x^{3}}\\=&\frac{2ln(x)}{x^{3}} - \frac{3}{x^{3}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2ln(x)}{x^{3}} - \frac{3}{x^{3}}\right)}{dx}\\=&\frac{2*-3ln(x)}{x^{4}} + \frac{2}{x^{3}(x)} - \frac{3*-3}{x^{4}}\\=&\frac{-6ln(x)}{x^{4}} + \frac{11}{x^{4}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-6ln(x)}{x^{4}} + \frac{11}{x^{4}}\right)}{dx}\\=&\frac{-6*-4ln(x)}{x^{5}} - \frac{6}{x^{4}(x)} + \frac{11*-4}{x^{5}}\\=&\frac{24ln(x)}{x^{5}} - \frac{50}{x^{5}}\\ \end{split}\end{equation} \]

\[ \begin{equation}\begin{split}[6/6]Find\ the\ 4th\ derivative\ of\ function\ \frac{x}{ln(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{ln(x)}\right)}{dx}\\=&\frac{1}{ln(x)} + \frac{x*-1}{ln^{2}(x)(x)}\\=&\frac{1}{ln(x)} - \frac{1}{ln^{2}(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{ln(x)} - \frac{1}{ln^{2}(x)}\right)}{dx}\\=&\frac{-1}{ln^{2}(x)(x)} - \frac{-2}{ln^{3}(x)(x)}\\=&\frac{-1}{xln^{2}(x)} + \frac{2}{xln^{3}(x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{xln^{2}(x)} + \frac{2}{xln^{3}(x)}\right)}{dx}\\=&\frac{--1}{x^{2}ln^{2}(x)} - \frac{-2}{xln^{3}(x)(x)} + \frac{2*-1}{x^{2}ln^{3}(x)} + \frac{2*-3}{xln^{4}(x)(x)}\\=&\frac{1}{x^{2}ln^{2}(x)} - \frac{6}{x^{2}ln^{4}(x)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{x^{2}ln^{2}(x)} - \frac{6}{x^{2}ln^{4}(x)}\right)}{dx}\\=&\frac{-2}{x^{3}ln^{2}(x)} + \frac{-2}{x^{2}ln^{3}(x)(x)} - \frac{6*-2}{x^{3}ln^{4}(x)} - \frac{6*-4}{x^{2}ln^{5}(x)(x)}\\=&\frac{-2}{x^{3}ln^{2}(x)} - \frac{2}{x^{3}ln^{3}(x)} + \frac{12}{x^{3}ln^{4}(x)} + \frac{24}{x^{3}ln^{5}(x)}\\ \end{split}\end{equation} \]



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。