There are 5 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/5]Find\ the\ second\ derivative\ of\ function\ xx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}\right)}{dx}\\=&2x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2x\right)}{dx}\\=&2\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/5]Find\ the\ second\ derivative\ of\ function\ xsin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsin(x)\right)}{dx}\\=&sin(x) + xcos(x)\\=&sin(x) + xcos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( sin(x) + xcos(x)\right)}{dx}\\=&cos(x) + cos(x) + x*-sin(x)\\=&2cos(x) - xsin(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/5]Find\ the\ second\ derivative\ of\ function\ xlog_{x}^{xx}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xlog_{x}^{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xlog_{x}^{x^{2}}\right)}{dx}\\=&log_{x}^{x^{2}} + x(\frac{(\frac{(2x)}{(x^{2})} - \frac{(1)log_{x}^{x^{2}}}{(x)})}{(ln(x))})\\=& - \frac{log_{x}^{x^{2}}}{ln(x)} + \frac{2}{ln(x)} + log_{x}^{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{log_{x}^{x^{2}}}{ln(x)} + \frac{2}{ln(x)} + log_{x}^{x^{2}}\right)}{dx}\\=& - \frac{(\frac{(\frac{(2x)}{(x^{2})} - \frac{(1)log_{x}^{x^{2}}}{(x)})}{(ln(x))})}{ln(x)} - \frac{log_{x}^{x^{2}}*-1}{ln^{2}(x)(x)} + \frac{2*-1}{ln^{2}(x)(x)} + (\frac{(\frac{(2x)}{(x^{2})} - \frac{(1)log_{x}^{x^{2}}}{(x)})}{(ln(x))})\\=& - \frac{4}{xln^{2}(x)} + \frac{2log_{x}^{x^{2}}}{xln^{2}(x)} + \frac{2}{xln(x)} - \frac{log_{x}^{x^{2}}}{xln(x)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/5]Find\ the\ second\ derivative\ of\ function\ xsin(x)cos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsin(x)cos(x)\right)}{dx}\\=&sin(x)cos(x) + xcos(x)cos(x) + xsin(x)*-sin(x)\\=&sin(x)cos(x) + xcos^{2}(x) - xsin^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( sin(x)cos(x) + xcos^{2}(x) - xsin^{2}(x)\right)}{dx}\\=&cos(x)cos(x) + sin(x)*-sin(x) + cos^{2}(x) + x*-2cos(x)sin(x) - sin^{2}(x) - x*2sin(x)cos(x)\\=&2cos^{2}(x) - 2sin^{2}(x) - 4xsin(x)cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[5/5]Find\ the\ second\ derivative\ of\ function\ sin(cos(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(cos(x))\right)}{dx}\\=&cos(cos(x))*-sin(x)\\=&-sin(x)cos(cos(x))\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -sin(x)cos(cos(x))\right)}{dx}\\=&-cos(x)cos(cos(x)) - sin(x)*-sin(cos(x))*-sin(x)\\=&-cos(x)cos(cos(x)) - sin(cos(x))sin^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!