Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 13.5*(x+1)+2.8*3700 = 11248.89 .
    Question type: Equation
    Solution:Original question:
     
27
2
( x + 1) +
14
5
× 3700 =
1124889
100
     Left side of the equation =
27
2
( x + 1) + 10360
    The equation is transformed into :
     
27
2
( x + 1) + 10360 =
1124889
100
    Remove the bracket on the left of the equation:
     Left side of the equation =
27
2
x +
27
2
× 1 + 10360
                                             =
27
2
x +
27
2
+ 10360
                                             =
27
2
x +
20747
2
    The equation is transformed into :
     
27
2
x +
20747
2
=
1124889
100

    Transposition :
     
27
2
x =
1124889
100
20747
2

    Combine the items on the right of the equation:
     
27
2
x =
87539
100

    The coefficient of the unknown number is reduced to 1 :
      x =
87539
100
÷
27
2
        =
87539
100
×
2
27
        =
87539
50
×
1
27

    We obtained :
      x =
87539
1350
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 64.843704



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。