Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (55-x)(-62-x)+27*126 = 0 .
    Question type: Equation
    Solution:Original question:
     (55 x )( - 62 x ) + 27 × 126 = 0
     Left side of the equation = (55 x )( - 62 x ) + 3402
    The equation is transformed into :
     (55 x )( - 62 x ) + 3402 = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 55( - 62 x ) x ( - 62 x ) + 3402
                                             = - 55 × 6255 x x ( - 62 x ) + 3402
                                             = - 341055 x x ( - 62 x ) + 3402
                                             = - 855 x x ( - 62 x )
                                             = - 855 x + x × 62 + x x
                                             = - 8 + 7 x + x x
    The equation is transformed into :
      - 8 + 7 x + x x = 0

    After the equation is converted into a general formula, it is converted into:
    ( x + 8 )( x - 1 )=0
    From
        x + 8 = 0
        x - 1 = 0

    it is concluded that::
        x1=-8
        x2=1
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。